Noise and Noise and Random Telegraph Signals (RTS) in nanoelectronic devices

Download Report

Transcript Noise and Noise and Random Telegraph Signals (RTS) in nanoelectronic devices

Noise and Random Telegraph
Signals in Nanoelectronic
Devices
Zeynep Çelik-Butler
Electrical Engineering Department
University of Texas at Arlington
Arlington, Texas, 76019
celikbutler@ieee.org
Outline

Motivation: Problems Encountered as the Devices
Shrink, Frequencies Increase, and Voltages Reduce
Improved Model for 1/f Noise in MOSFETs
 Random Telegraph Signals in MOSFETs

 Complex
RTS
 Extraction of trapping parameters using RTS
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
2
UTA - Noise Characterization
Facilities

6' x 6' x 8' Shielded Room

3 Spectrum and Signal Analyzers,
f=1 mHz - 20 GHz.

3 Cryostats, T= 2 K to 350 K.

Various Lock-ins, Preamps, System
Controllers, Battery Operated Sources
etc.

Optical Equipment

Computer Software for Modeling
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
3
Problems Encountered as the Devices Shrink,
Frequencies Increase, and Voltages Reduce

Signal-to-noise ratio decreases.
Noise models based on large number of electrons
break down.


Quantum effects become dominant.
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
4
Signal to Noise Ratio Decreases
For
a MOSFET
Start from W=100mm, L=10mm, tox=800Å, NSS=4x1010 eV1cm-2.
Assume scaling factor is K.
Assume trap and surface state densities remain the same.
W  W K , L  L K , tox  tox
K
in noise level due to the K1/2 law chosen for tox.
Unpredictability of noise level for K>20.
NSS is actually a two dimensional Poisson variable.
Increase
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
5
Large Area Noise Models Break Down
Single electron, single trap effects.
NSS=4x1010 eV-1 cm-2, W=1mm, L=0.1mm.
EC
kT=26 meV
EF
EV
Si
1 trap per channel
SiO2
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
6
Large Area Noise Models Break Down
Break-down of large-area models for sub-micron channel length.



kTq 2 I d m eff 
NO  N *
1
2
2
S Id ( f ) 
 B( N O  N L )  C N O  N L 
 A ln
2
*
2
fL Cox 
NL  N

•
•
•
•
A=Nt (cm-3 eV-1)
B=ameffNt (cm-1 eV-1)
C=a2meff2Nt (cm eV-1)
A=B2/(4C)
Independent parameters:
a and Nt
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
7
Large Area Noise Models Break Down
-10
-11
10
Vgs-VT= -1 V
Vds= -50 mV
S
Vd
2
(1Hz) (V /Hz)
10
-12
10
-13
10
-14
10
0.1
1
Channel length (mm)
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
10
8
Large Area Noise Models Break Down
20
10
2 channel region model
uniform channel model
19
-1
N (cm eV )
10
18
-3
10
17
t
10
16
10
15
10
0.2
0.4
0.6
0.8
L (mm)
1
1.2
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
1.4
9
Large Area Noise Models Break Down
Modified 1/f noise model that takes into account threshold variation
along the channel.
• For simplicity assume two regions:
– DV, DL, VT2,, A2, B2, C2
– Vds-DV, L-DL, VT1, A1, B1, C1
–
–
–
–
–
DL<<L, VTVT1
A1 = A2, since Nt1 = Nt2
B12/C1 = B22/C2 = 4A
I1 = I2 = Id
meff1 = meff2,
Independent parameters:
Nt, a1, a2, VT2, and DV
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
10
Large Area Noise Models Break Down
Modified 1/f noise model that takes into account threshold variation along the
channel.
-17
10
-18
-19
10
Id
2
S (A /Hz)
10
L=0.32mm
-20
10
L=0.45mm
-21
10
L=1.0mm
-22
10
0
0.5
1
1.5
2
|V -V | (V)
gs
T
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
11
RTS in MOSFETs
Random Telegraph Signals: single electron switching.
t1
RTS (Arbitrary Units)
0.0002
0.00015
0.0001
5 10
-5 10
DId
-5
0
-5
-0.0001
5.2
5.3
5.4
5.5
Time (sec)
5.6
t0
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
5.7
12
RTS in MOSFETs
Time Scale  seconds
PSD
Random Telegraph Signals (RTS) with a Lorentzian on 1/f spectum.
Frequency
Time Scale
 milliseconds
S( f ) 
(f)
4DI 2
t0  t1  1 t0  1 t1 2  2f 2 
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
13
NMOS,W/L(mm)=5/0.23, VDS=175mV, VGS=0.60V
10-9
10-10
Sv (V2/Hz)
10-11
10-12
Sv = 6.11e-12 / ( 1 + f / 1260 ) 2
10-13
1 RTS process
10-14
10-15
100
101
102
103
104
105
Frequency (Hz)
DV (10-4 V)
2
0
-2
-4
-6
2 RTS levels
-8
-10
0
1
2
3
4
5
6
7
8
Time (ms)
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
14
PMOS T1 W/L=5/0.25 VDS=150mV VGS=0.9V
10-9
2
Sv = 1.4e-10 / ( 1 + f / 1.8)
10-10
Sv (V2/Hz)
10-11
2
Sv = 2.3e-14 / ( 1 + f / 23700)
10-12
10-13
2 RTS processes
10-14
10-15
10-1
100
DV (10-4 V)
2
101
102
103
104
105
Frequency (Hz)
1
0
3 RTS levels
-1
0
1
2
3
Time (ms)
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
15
NMOS ,W/L(mm)=5/0.23 ,VDS=150mV,VGS=0.775V
10-8
Sv = 1.11e-10 / ( 1 + f / 3.12 )
2
10-9
Sv = 1.18e-11 / ( 1 + f / 48) 2
Sv = 1.08e-12 / ( 1 + f / 1345)
10-11
2
2
Sv (V /Hz)
10-10
4 RTS processes
10-12
Sv = 2.93e-14 / ( 1 + f / 36 780)
10-13
10-14
10-15
10-1
3
100
101
102
103
104
105
Frequency (Hz)
DV (10-4 V)
2
1
0
-1
5 RTS levels
-2
-3
0
1
2
3
4
5
6
7
8
Time (ms)
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
16
2
COMPLEX RTS
9.E-03
(a)
Voltage (V)
7.E-03
level 4
5.E-03
level 3
3.E-03
level 2
1.E-03
level 1
-1.E-03
2
2.02
2.04
2.06
2.08
2.1
Time (s)
Complex random telegraph signals due to multiple traps
SI ( f )
I
2
N traps
 
k 1
DI I 2k
t0  t1 k 1 t0  1 t1 2k  2f 2 
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
17
RTS in MOSFETs
RTS can be used to characterize trapping sites.
RTS modeling.

EC
S( f ) 
ECox-ET
EFp
xT
4DI 2
t0  t1  1 t0  1 t1 2  2f 2 
qVc
EFn
qs
EFg
gate
qVgs
S( f ) 
oxide
AF  I d2
2f 
2
 KF 2

silicon
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
18
RTS in MOSFETs
RTS can be used to characterize trapping sites.
•
•
•
•
Position of the trap along the channel, yT
Position of the trap in the oxide, xT
Trap energy, ECox - ET
Screened scattering coefficient, a
Vc  y Vds L
DI d DN Dm
1
1





am

Id
N
m
Weff Leff  N

ln



tc
xT
1 



E

E

E

E

qV



q


q
V

V


 Cox
T
C
Fp
c
0
s
gs
FB
s 
te
kT 
Tox

Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org


19
tc / t e
Trapping Parameters Through RTS in
MOSFETs
10
1
10
0
yT/L=0.6
ECox-ET=3.04 eV
(b)
0.01
0.1
Drain Voltage (V)
xT=2.7 nm
10
2
10
1
10
0
1
t /t
c
e
10
-1
Forward
Reverse
(a)
10
-1
0.25
0.3
0.35
0.4
Gate Voltage (V)
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
0.45
0.5
20
Trapping Parameters Through RTS in MOSFETs
10
-1
10
-2
10
-3
10
-4
ds
DV / V
ds
D N/N
10
-1
0.04
Forward
Reverse
0.06 0.08 0.1
V -V
10
-2
10
-3
T
(V)
ds
DV / V
ds
gs
0.3
0.01
0.1
Drain Voltage (V)
1
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
21
Scattering Coefficient (V-s)
Trapping Parameters Through RTS in
MOSFETs
6 10
-14
5 10
-14
4 10
-14
3 10
-14
2 10
-14
1 10
-14
Forward
Reverse
0.04
0.06 0.08 0.1
V -V (V)
gs
0.2
T
a  K1  K 2 ln N
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
22
Effects of Quantization
•Increase in effective energy
band-gap: change in te and tc
• Shift in carrier distribution:
change in Cox
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
23
3-D Treatment of RTS
1
1
tc 

cn  n3D  n (3D)  Vth  n3D
exp ( E F  ET ) / k BT 
te 
 n (3D)  Vth  n3D
cn  n 3D  Vth
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
24
2-D Treatment of RTS - tc and te
tc 
1
cn  n2 D  0z
p( z )
dz
z
1

 n (2 D)  Vth  n2 D  0z
p( z )
dz
z
1
exp ( EF  ET ) / k BT 
te 

en  (2 D) V  n  z p( z ) dz
n
th
2 D 0
z
cn  n 2D Vth
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
25
2-D Treatment of RTS
• From Stern - Howard wave-function:
b3 2
p( z ) 
z exp  bz 
2
1/ 3
 12qml 
11

b 2
  QB   Qinv 
32

   Si 0 
z  3/ b
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
26
2-D Treatment of RTS
• Calculate the inversion carrier concentration
assuming they are located primarily at E0:
1
1

N  n2 D  p( z )dz
 2k BTmt

z

exp  ECS  DE0  EF  / k BT  0 p( z )dz 
2
 

1/ 3
 2 

DE0  
 2m 
 l
 9q 


8


 Si 0 
2/3
1
2 Si 0qN B (VSB  2F )1/ 3
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
27
2-D Treatment of RTS - tc and te
te 
tc 
exp ( ECS  ET  DE0 ) / k BT 
n (2 D) Vth  (2k BTmt b / 5 2)
exp ( ECS  EF  DE0 ) / k BT 
n (2D) Vth  (2k BTmt b / 5 2)
 tc 

1 
zT




ln    
E

E

E

E



q


q
V

V


T
CB
F
0
s
gs
FB
s 
 Cox
t 
k
T
T
B 
ox

 e


• To first order, the ratio is not affected by quantization.
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
28
RTS Measurements
•
•
•
•
•
•
MDD n-MOSFETs
Weff  Leff = 1.37  0.17 mm2
Tox = 4 nm
VT = 0.375 V for VSB = 0 V
strong inversion, linear region VDS = 100 mV
VSB = 0 - 0.4 V, VGS = 0.5 - 0.75 V
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
29
ECox-ET and zT from tc and te
 tc 

1 
zT


ln

Vgs  VFB   s 
ECox  ET   ECB  E F   0  q s  q
t 
k BT 
Tox

 e


3.5
VSB=0 V
3
t
ln( t / )
c e
ln(t
c/te)
2.5
2
1.5
1
0.5
0
0.45
0.5
0.55
0.6
0.65
V (V)
0.7
0.75
0.8
GS
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
30
ECox-ET and zT from tc and te
 tc 

1 
zT


ln

Vgs  VFB   s 
ECox  ET   ECB  E F   0  q s  q
t 
k BT 
Tox

 e

3.5

VSB=0.4 V
3
t
t/ )
c )e
ln(tln(c/t
e
2.5
2
1.5
1
0.5
0
0.45
0.5
0.55
0.65
0.6
0.7
0.75
0.8
V (V)
GS
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
31
ECox-ET and zT from tc and te
Tox =4 nm
VSB (V)
VT (V)
zT (Å)
ECox-ET (eV)
0
0.375
11.22
3.09
0.1
0.382
11.53
3.08
0.2
0.393
11.37
3.08
0.3
0.401
11.64
3.07
0.4
0.408
11.08
3.08
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
32
Dependence of te on VSB
te 
te(s)
te (s)
2 10
exp ( ECS  ET  DE0 ) / k BT 
n (2 D) Vth  (2k BTmt b / 5 2)
-3
10
-3
8 10
-4
6 10
-4
VGS=0.75 V
VGS=0.55 V
4 10
-4
-0.1
0
0.1
0.2
0.3
0.4
0.5
0.6
V (V)
SB
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
33
Dependence of tc on VSB
tc 
10
exp ( ECS  EF  DE0 ) / k BT 
n (2D) Vth  (2k BTmt b / 5 2)
-2
VGS=0.55 V
(s)
tc t(s)
c
VGS=0.65 V
VGS=0.75 V
10
-3
-0.1
0
0.1
0.2
0.3
0.4
0.5
0.6
V (V)
SB
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
34
cn Extracted from tc and te

Vth  8k BT / mn
n  0 exp  DEB k BT 
-11
cn  n 2D Vth
n
3
capture coefficient c (cm /s)
10

* 1/ 2
10
-12
10
-13
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
V (V)
GS
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
35
2-D Treatment of RTS - Amplitude
 1 DN 1 m 
DI D
1
1

 

DN t  
  am
ID
Weff  Leff  N

 DN DNt m DNt 
m
1
1
1
 m n  mt
1
 m n  aNt
• Question: How does quantization affect number
and mobility fluctuations?
– Number fluctuation through N
– Mobility fluctuations through oxide charge scattering,
mt.
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
36
Extraction of Scattering Coefficient
• Mobility Fluctuations:
– Using Surya’s 2D surface mobility fluctuations model,
2
exp(

4
kz
sin

)
sin

/ 2
1
mt 
dNt E , z 
 dz  dE 0
2
c 2
8av E p
(sin   )
2k
mn*q 3
k  0.82 aSi 
   2 N  
2q 2 d v mn* 

 
c
1

exp



*
4 2 si 
  k BTd v mn  
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
37
Calculation of Scattering Coefficient
• Considering a single trap:
Nt(E,z) = Nt(E-ET)  (z-zT)
2
sin

/ 2
1
mt 
exp( 4kzT sin )dNt
0
2
c 2
8av E p
(sin   )
2k
mn*q 3
a
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
38
RTS Amplitude
-4
DS
D V /V
DS
3 10
-4
2 10
VSB =0V
VSB =0.1V
VSB =0.2V
VSB =0.3V
VSB =0.4V
-4
1 10
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
V (V)
GS
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
39
Extraction of Scattering Coefficient
2.4 10
-14
Tox =4 nm
2 10
-14
experimental data @V
=0V
SB
fitting with z =0.11nm
t
a (V-s)
fitting with z =0.12nm
t
1.6 10
-14
1.2 10
-14
8 10
-15
6 10
a = 2.91x10-13 - 9.93x10-15 ln(N)
-11
10
12
-2
N(cm )
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
10
40
13
Extraction of Scattering Coefficient
-14
Scattering Coefficient (V-s)
1 10
Tox =8.6 nm
-15
8 10
W L = 1.2  0.35 mm2
-15
6 10
-15
4 10
experimental results of Hung et al.8
fitting of Pacelli et al.11
-15
2 10
theoretical calculation from 2-D
mobility fluctuation model
11
10
zT =0.25 nm
12
10
-2
N(cm )
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
13
10
41
Possible Reasons for Discrepancy
• Threshold non-uniformity along the channel is not
taken into account.
• Location of the trap along the channel
• Variation of the channel voltage from source to drain
is neglected.
• DN/DNt  1 is not valid, even in strong inversion, for
very thin oxides.
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
42
ACKNOWLEDGEMENTS
• This work has been supported by NSF, THECB-ATP,
SRC, TI, Legerity, Motorola and ST-Microelectronics.
Noise and Reliability Laboratories, Zeynep Celik-Butler,
celikbutler@ieee.org
43