C2 Delta Morphology.ppt

Download Report

Transcript C2 Delta Morphology.ppt

Morphology of Deltas
James P.M. Syvitski, CSDMS Executive Director, syvitski@colorado.edu
A deltas’s morphodynamics is controlled by boundary conditions and forcing
factors: (1) sediment supply; (2) accommodation space; (3) river & coastal energy;
and (4) density differences between effluent and receiving waters.
Syvitski, Kiel Short Course 2013
Database:
A=drainage area; R=basin relief; Qav=discharge; Y=sediment yield;
L=river length; Dgrd=delta gradient; CN=no. of distributary channels;
Ti=spring (K1+M2) tidal range; Wa=maximum monthly wave height;
T=basin temperature; P=precipitation; Rcf=Qav/A=runoff;
Qmx=monthly maximum discharge; Qs+b=total sediment discharge;
Cs=suspended sediment concentration; Qs=suspended load;
Qb=bedload; AD=delta area;, Cw=width of distributary channels;
Rw=bank-full river width; Dsh=depth reached by subaqueous delta;
Vs=volume of sediment delivery per thousand years;
Pr=11QDgrd =proxy of river power;
Pm=Wa2+Ti2 =proxy of marine power;
=Qs+b/Pm=ratio of sediment supply to marine dispersal;
Vs/AD Dsh =ratio of sediment supply to sediment retention;
Syvitski, Kiel Short Course 2013
Seasonal satellite images were processed—LANDSAT7:30m MODIS:250m, SPOT:10m,
airphotos:1m, IKONOS:1m. Pre and post dam data were used. Discharge data came from the
WMO Global Runoff Data Center (GRDC), or the GRDC-Water Balance Model (Syvitski et
al., 2005), or government archives. Sediment load data came from long-term national surveys
(Syvitski et al., 2005) and from a modified Bagnold equation for bedload:
rgQavb Dgrd eb
Qb =
rs - r
tan f
rs
Syvitski, Kiel Short Course 2013
when u ³ ucr
AD=0.0056Qav1.28Qs+b0.41
CN=0.038Qmx0.75Pm-0.6
Dgrd=0.00360.3Cs0.5Qav-0.33
TCW=Qmx1.1e0.3Tie-0.77Wa
Syvitski, Kiel Short Course 2013
Distributary channel widths form variants on lognormal
distributions: Brownian or Gaussian statistics would be
reasonable for use in numerical models
Syvitski, Kiel Short Course 2013
Based on just 25 deltas, the size of bed-material load (Dmm) is a
simple power-law relationship of a river's length (L):
Dmm = 106 L-0.9
Downstream fining is a well-established relationship in river
hydrology (van Niekerk et al., 1992; Vogel et al., 1992). Fine-grained
(muddy) deltas (e.g. Amazon, Mekong, Orinoco) are thus feed by
long rivers. Chemical vs physical weathering dominance may also
play an important role.
Syvitski, Kiel Short Course 2013
Sediment supply to sediment retention ratio
Vs/ADDSh
•6Vs is the sediment volume (km3) delivered to the delta in
6kyr, a time when global sea level stabilized and deltas began to
form (e.g. ART model: Syvitski et al., 2005, Science)
•Dsh is water depth (m) reached by the submerged delta
determined from shelf profiles and provides a measure of the
accommodation space;
•AD is the delta area (km).
•25 deltas  and are considered in equilibrium
•18 deltas  and either had a larger Qs+b in part of its 6Kyr
(paraglacial: Lena; or wetter: Nile), or have an effective
dispersal system (Amazon, Ganges, Yangtze)
•10 deltas  and either had a smaller Qs+b in part of its
6Kyr (prior to human disturbance: Waipaoa; or drier: Eel), or
had more than one delta (Yellow), or had natural dams
(Colorado, TX).
Syvitski, Kiel Short Course 2013
River Dominated
Type Delta:
Low Marine Energy
1 km
Volga: Pm/Pr=0.2, Qmx=22,400 m3/s, Qmx/Q=2.7, CN=100, =0.64,
TCW:RW=1.7. Leads to feathering of distributary channels
Syvitski, Kiel Short Course 2013
Mississippi
River
Syvitski, Kiel Short Course 2013
Mississippi Delta (pre-1960):
Pm/Pr=0.1, Qmx=30,500 m3/s,
Qmx/Q=2.7, CN=71, =31
TCW:RW=10,
Growth by a hierarchy of channel
splitting & abandonment
Type Delta:
Low Marine Energy
High Sediment Supply
1 km
Syvitski, Kiel Short Course 2013
Lena Delta: polar 17°C, Pm/Pr=0.2,
Qm=74,400m3/s,
Qmx/Q=4.6, CN=115,
=0.3, TCW:RW=17,
Growth by mouth bars
and overflow channels
Type Delta:
Low Marine Energy
High Discharge Variability
1 km
Syvitski, Kiel Short Course 2013
Type Delta:
High Sediment Supply
Low Discharge Variability
Orinoco Delta: tropical-wet, Pm/Pr=0.4, Qmx= 58,800 m3/s, Qmx/Q=1.7,
CN=27, =1.1, TCW:RW=16. Drainage channels coalesce into tidal estuaries
Syvitski, Kiel Short Course 2013
River
Tigris-Euphrates Delta
Syvitski, Kiel Short Course 2013
Tide Dominated
Tides
Fly Delta
Syvitski, Kiel Short Course 2013
Type Delta:
High Marine Energy (Tides)
Low Discharge Variability
Fly Delta: tropical-wet,
Pm/Pr=2.5,
Qmx= 3,500 m3/s,
Qmx/Q=1.4, CN=5, =0.1,
TCW:RW=37. Growth by tidal
current divergence
Syvitski, Kiel Short Course 2013
Tides
Yangtze (Chang Jiang
Syvitski, Kiel Short Course 2013
Irrawaddy Myanmar
Tides
Syvitski, Kiel Short Course 2013
Colorado US/Mexico
Syvitski, Kiel Short Course 2013
Amazon
River Tides
Syvitski, Kiel Short Course 2013
Indus
Tides
Syvitski, Kiel Short Course 2013
Wave Dominated
Type Delta:
No Tides
Low Discharge Variability
Danube Delta: Pm/Pr=0.4, Qmx= 8900 m3/s, Qmx/Q=1.4,
CN=9, =1, TCW:RW=4. Controlled by river & longshore
transport
Syvitski, Kiel Short Course 2013
Wave
Nile
Syvitski, Kiel Short Course 2013
Wave - River
Vistula River Delta
Syvitski, Kiel Short Course 2013
Wave
Syvitski, Kiel Short Course 2013
Godavari
Wave
Orange River
Syvitski, Kiel Short Course 2013
Brazos, Tx
Syvitski, Kiel Short Course 2013
Wave
Danube
Wave
Syvitski, Kiel Short Course 2013
Krishna Delta
Wave
Syvitski, Kiel Short Course 2013
Wave
Rhone
Syvitski, Kiel Short Course 2013
Brahmani Delta
Wave
Mahanadi Delta
Syvitski, Kiel Short Course 2013
Wave - Tides
Limpopo
Syvitski, Kiel Short Course 2013
Mixed Energy
or Complex
Ganges/Brahmaputra
India
Pakistan
Syvitski, Kiel Short Course 2013
Tides River
Wave River
Mekong
Syvitski, Kiel Short Course 2013
Type Delta:
Balanced Energy
(River vs.Tide vs. Wave)
High Discharge Variability
Copper Delta: proglacial, Pm/Pr=0.6, Qmx= 5,400 m3/s,
Qmx/Q=4.4, CN=5, =0.1, TCW:RW=8. Growth by river-tidal-wave influence
Syvitski, Kiel Short Course 2013
Type Delta:
Balanced Energy
(River vs. Tide)
Niger Delta: tropical-wet, Pm/Pr=1.2, Qmx= 12,000 m3/s, Qmx/Q=2, CN=15,
=0.1 TCW:RW=8.5. Drainage channels coalesce into tidal estuaries
Syvitski, Kiel Short Course 2013
Niger Delta
Wave TIdes
Syvitski, Kiel Short Course 2013
Geology
Congo (Zaire)
Syvitski, Kiel Short Course 2013
Geology
Pearl (Xijiang)
Syvitski, Kiel Short Course 2013
Red
Wave
Syvitski, Kiel Short Course 2013
Small River Delta
&
Bayhead Deltas
Eel Delta: high tides (3m) & waves (3.5m), Qmx= 750 m3/s,
Qmx/Q=3.2, CN=1. Controlled by longshore transport
Syvitski, Kiel Short Course 2013
Wave
Klamuth
Syvitski, Kiel Short Course 2013
Colorado TX: low tides
(0.7m), no waves in
lagoon,
1.5m waves onto barrier,
Qmx= 326 m3/s,
Qmx/Q=2.3, =0.02.
Lagoon filling delta
Pm/Pr<0.1
Pm/Pr=2.8
Syvitski, Kiel Short Course 2013
the supplyto-dispersal
ratio assigns
small deltas to
the dispersal
end of the
spectrum
Paraná
River - Geology
Syvitski, Kiel Short Course 2013
Homathko
Klinaklini
River - Tides
Syvitski, Kiel Short Course 2013
Wave - River
Waipaoa
Syvitski, Kiel Short Course 2013
Wave
Eel
Syvitski, Kiel Short Course 2013
Arno
River-Wave
Syvitski, Kiel Short Course 2013
Chao Phraya
Tides
Syvitski, Kiel Short Course 2013
Uplifting Deltas
Sea Level Fall Deltas
Syvitski, Kiel Short Course 2013
Forced regression, clinoform emerges, local depocenters are filled in.
Rapid local fluvial incision, razor-blade effect in zone of highest uplift
Grain size: yellow = sand, blue = clay
SedFlux simulation
Age
5
Distance (km)
30
Syvitski, Kiel Short Course 2013
10m
Fjords are one of the only coastal basins that host clinoforms that develop
during falling sea level. Fjords offer a high preservation potential, given
their basin characteristics, and provide a modern-day opportunity to study
basin fill during a falling sea level.
Syvitski, Kiel Short Course 2013
Turbidity currents go through an
period of acceleration marked by
seafloor erosion.
Syvitski, Kiel Short Course 2013
Periglacial Deltas
Wave
Yukon Delta
Syvitski, Kiel Short Course 2013
Ice
Yana River Delta
Syvitski, Kiel Short Course 2013
Ice
Mackenzie Delta
Syvitski, Kiel Short Course 2013
Indigirka
Ice
Syvitski, Kiel Short Course 2013
River - Tide
Pechora
Syvitski, Kiel Short Course 2013
Ice
Kolyma
Syvitski, Kiel Short Course 2013
River - Ice
Syvitski, Kiel Short Course 2013
Conclusion:
• Only a few environmental factors are defining in delta
morphodynamics (L, Qav, Qmx, Qs+b,  Cs, Ti, Wa, Pm, Pr) and can
be used to understand/predict AD, CN, Dgrd, & TCW.
•
The simple ternary delta/estuary diagram is inadequate to capture
the true range in morphology, and suffers from scaling: all small
deltas except those protected by bays or inlets, cannot compete
with the typical power of marine waves, longshore currents, or
tidal currents: & giant deltas are poorly represented.
•
Type deltas include those influenced by low marine energy,
polar/desert deltas, temperate rainforest & tropical deltas, deltas
dominated by wave and/or tidal energy
•
Human engineering controls the growth and evolution of a
growing number of deltas.
Syvitski, Kiel Short Course 2013