Electronic Materials Conference (EMC), 6-25-2009 Improved Migration-Enhanced Epitaxy for Self-Aligned InGaAs Devices Mark A.

Download Report

Transcript Electronic Materials Conference (EMC), 6-25-2009 Improved Migration-Enhanced Epitaxy for Self-Aligned InGaAs Devices Mark A.

Electronic Materials Conference (EMC), 6-25-2009
Improved Migration-Enhanced
Epitaxy for Self-Aligned InGaAs
Devices
Mark A. Wistey
University of California, Santa Barbara
Now at University of Notre Dame
mwistey@nd.edu
U. Singisetti, G. Burek, A. Baraskar,
V. Jain, B. Thibault, A. Nelson,
E. Arkun, C. Palmstrøm, J. Cagnon, S.
Stemmer, A. Gossard, M. Rodwell
University of California Santa Barbara
mwistey@nd.edu
P. McIntyre, B. Shin, E. Kim
Stanford University
S. Bank
University of Texas Austin
Y.-J. Lee
Intel
Funding: SRC
Outline: Channels for Future CMOS
•Motivation for Self-Aligned Regrowth
•Facets, Gaps, Arsenic Flux and MEE
•Si doping and MEE
•Scalable III-V MOSFETs
•The Shape of Things to Come
Wistey, EMC 2009
2
Motivation for Self-Aligned Regrowth
Blanket layers
AlGaAs
GaAs
InGaAs
GaAs
AlGaAs
GaAs
• 3D nanofabrication
?
Air gap VCSEL,
Dave Buell thesis
Qi Xinag, ECS 2004, AMD
Buried het laser,
C-W Hu JECS 2007
• Integration: III-V’s on Si
• Heteroepitaxy
• Selective area growth
• And III-V MOSFETs...
Wistey, EMC 2009
• Device properties
–Heat transfer
–Contacts
–Current blocking
W.K. Liu et al., J. Crystal Growth v. 311, p. 1979 (2009)
3
Motivation for Regrowth: Scalable III-V FETs
Classic III-V FET (details vary):
{
Source
Large Area Contacts
Gap
Drain
Gate
Large Rc
Top Barrier or Oxide
• Disadvantages
of III-V’s
Channel
Bottom Barrier
InAlAs Barrier
{
• Advantages
of III-V’s
Implant: straggle,
short channel effects
Low
doping
III-V FET with Self-Aligned Regrowth:
High Velocity Channel
Small Raccess
Small Rc
High mobility
access regions
High doping: 1013 cm-2
avoids source exhaustion
Wistey, EMC 2009
Self-aligned
Gate
High-k
n+ Regrowth
High barrier
Channel
In(Ga)P Etch Stop
Bottom Barrier
2D injection avoids
source starvation
5nm
} Ultrathin
doping layer
Dopants active as-grown
4
Process Flow Prior to Regrowth
Pattern gate metal
Selective dry etches
SiNx or SiO2 sidewalls
Encapsulate gate metals
Controlled recess etch (optional)
Slow facet planes
Not needed for depletion-mode FETs
Fabrication details:
U. Singisetti, PSSC 2009
Rodwell IPRM 2008
SiO2,
SiNx
Metals
high-k
Channel
Surface clean
UV ozone,
1:10 HCl:water dip & rinse,
UHV deox (hydrogen or thermal)
In(Ga)P etch stop
InAlAs barrier
InP substrate
Regrowth
Wistey, EMC 2009
5
MBE Regrowth: Bad at any Temperature?
200nm Gap
• Low growth temperature (<400°C):
–Smooth in far field
–Gap near gate (“shadowing”)
–No contact to channel (bad)
Gate
Source-Drain
Regrowth
SiO2
Metals
high-k
Channel
• High growth temperature (>490°C):
– Selective/preferential epi on InGaAs
– No gaps near gate
– Rough far field
– High resistance
Wistey, EMC 2009
Gate
Source-Drain
Regrowth
Regrowth: 50nm InGaAs:Si, 5nm InAs:Si.
Si=8E19/cm3, 20nm Mo, V/III=35, 0.5 µm/hr.
SEMs: Uttam Singisetti
6
Gap-free Regrowth by MEE
Migration-Enhanced Epitaxy (MEE) conditions: Wistey, MBE 2008
490-560°C (pyrometer)
As flux constant ~ 1x10-6 Torr: V/III~3, not interrupted.
0.5nm InGaAs:Si pulses (3.7 sec), 10-15 sec As soak
RHEED: 4x2 ==> 1x2 or 2x4 ==> 4x2 with each pulse.
SEM Side View
SEM Cross Section
Top of gate:
amorphous
InGaAs
SiO2 dummy
gate
SiO2 dummy gate
InGaAs Regrowth
InGaAs Regrowth
Original Interface
SEM: Greg Burek
• Smaller gapCrosshatching—relaxation?
• High Si activation (4x1019 cm-3).
Wistey, EMC 2009
SEM: Uttam Singisetti
•Quasi-selective growth
7
High Temperature MEE: Smooth & No Gaps
460C
490C
Gap
540C
560C
Smooth
regrowth
SiO2 dummy
gate
SiO2 dummy
gate
In=9.7E-8, Ga=5.1E-8 Torr
Wistey, EMC 2009
No gaps, but
faceting next
to gates
Note faceting: surface kinetics, not shadowing.
8
Shadowing and Facet Competition
SiO2
Shen & Nishinaga, JCG 1995
Fast surface
diffusion =
slow facet
growth
Slow diffusion =
rapid facet growth
SiO2
[100]
Slow
diffusion =
fast growth
Fast surface
diffusion =
slow facet growth
[100]
• Shen JCG 1995 says:
Increased As favors [111] growth
Good fill next to gate.
Wistey EMC 2009
• But gap persists
9
Gate Changes Local Kinetics
1. Excess In & Ga
don’t stick to SiO2
2. Local
enrichment
of III/V ratio
4. Low-angle planes grow
instead
SiO2
[100]
3. Increased
surface mobility
• Diffusion of Group III’s away from gate
• Solution: Override local enrichment of Group III’s
Wistey EMC 2009
10
Control of Facets by Arsenic Flux
SEM of single-wafer growth series varying As flux
• InGaAs Experiment:
• Vary As flux
• InAlAs marker layers
• Find best fill near
gate
InAlAs
markers
Increasing
InGaAs As flux
SiO2
Cr
W
5x10-6
2x10-6
1x10-6
0.5x10-6
• Lowest arsenic flux → “rising tide fill”
• No gaps near gate or SiO2/SiNx
• Tunable facet competition
Wistey, EMC 2009
11
SiNx
Scalable InGaAs MOSFETs
300 nm SiO2 Cap
50 nm Cr
50 nm W
Mo
Mo
5 nm Al2O3
++
n regrowth InGaAs Channel, NID n++ regrowth
3 nm InGaP Etch Stop, NID
10 nm InAlAs Setback, NID
5 nm InAlAs, Si=8x1019 cm-3
200 nm InAlAs buffer
Semi-insulating InP Substrate
Top view SEM
Wistey, EMC 2009
Oblique
view
12
SiNx
Scalable InGaAs MOSFETs
300 nm SiO2 Cap
50 nm Cr
50 nm W
Mo
Mo
5 nm Al2O3
++
n regrowth InGaAs Channel, NID n++ regrowth
3 nm InGaP Etch Stop, NID
10 nm InAlAs Setback, NID
5 nm InAlAs, Si=8x1019 cm-3
200 nm InAlAs buffer
Semi-insulating InP Substrate
Wistey, EMC 2009
• Conservative doping design:
• [Si] = 4x1013 cm-2
• Bulk n = 1x1013 cm-2 >> Dit
• Large setback + high doping
= Can’t turn off
• High Rsource > 350 Ω-µm
13
Silicon Doping in MEE
Shutter Pattern
(Arsenic always open)
Technique
Si
Conventional MBE
[Si]
(cm-3)
n
(cm-3)
µ
(cm2V-1s-1)
8x1019
4.8x1019
847
8x1019
4.3x1019
1258
8x1019
4.2x1019
1295
16x1019
--
--
Ga
Si during Group III
MEE pulse
Si
Ga
Si
Si during As soak
Ga
Si
Double Si doping
Ga
• Electron concentration nearly constant
• Si prefers Group III site even under As-poor conditions
• Increased mobility by MEE
Wistey, EMC 2009
14
Regrown InAs S/D FETs
4.7 nm Al203, 5×1012 cm-2 pulse doping
In=9.7E-8, Ga=5.1E-8 Torr
top of gate
InAs
regrowth
side of gate
Mo S/D metal with
N+ InAs underneath
• InAs native defects are donors.1
• Reduces surface depletion.
• Decreased As flux works for InAs too.
• Gallium-free
= improved selectivity in regrowth
1
Wistey, EMC 2009
Bhargava et al , APL 1997
SEM: Uttam Singisetti
15
InAs Source-Drain Access Resistance*
*Wistey et al, NAMBE 2009
4.7 nm Al203, InAs S/D E-FET. TLMs corrected for metal resistance.
• Total Ron = 600 Ω-μm ➡ Rs < 300 Ω−μm.
• gm << 1/Rs ~ 3.3 mS/μm -- Not source-limited.
InAs contacts no longer limit MOSFET performance.
Wistey, EMC 2009
Slide: Uttam Singisetti, DRC 2009
16
The Shape of Things to Come
Generalized Self-Aligned Regrowth Designs:
Gate
n+ Regrowth
Recessed
Raised
Gate
Top Barrier
Top Barrier
Channel
Back Barrier
Substrate
Channel
Back Barrier
Substrate
• Self-aligned regrowth can also be used for:
• GaN HEMTs (with Nidhi in Mishra group, EMC 2009)
• InGaAs HBTs and HEMTs
• Selective III-V on Si — remove gaps
• THz and high speed III-V electronics
Wistey, EMC 2009
17
Conclusions
• Reducing As flux improves filling near gate
• Self-aligned regrowth: a roadmap for scalable III-V FETs
–Provides III-V’s with a salicide equivalent
–Can improve GaN and GaAs FETs too
• Silicon doping impervious to MEE technique
• InAs regrown contacts improve InGaAs MOSFETs...
–Not limited by source resistance @ 1 mA/µm
–Comparable to other III-V FETs... but now scalable
Wistey, EMC 2009
18
Acknowledgements
• Rodwell & Gossard Groups (UCSB): Uttam Singisetti,
Greg Burek, Ashish Baraskar, Vibhor Jain...
• McIntyre Group (Stanford): Eunji Kim, Byungha Shin,
Paul McIntyre
• Stemmer Group (UCSB): Joël Cagnon, Susanne
Stemmer
• Palmstrøm Group (UCSB): Erdem Arkun, Chris
Palmstrøm
• SRC/GRC funding
• UCSB Nanofab: Brian Thibeault, NSF
Wistey, EMC 2009
19