www.gfai.de/~heinz How Network Topology Defines its Behavior Serial Code Detection with Spiking Networks Dr.

Download Report

Transcript www.gfai.de/~heinz How Network Topology Defines its Behavior Serial Code Detection with Spiking Networks Dr.

Slide 1

www.gfai.de/~heinz

How Network Topology Defines its Behavior Serial Code Detection with Spiking Networks
Dr. Gerd Heinz

Gesellschaft zur Förderung
angewandter Informatik e.V
Berlin-Adlershof

Workshop „Autonomous Systems”
Herwig Unger & Wolfgang Halang
Hotel Sabina Playa, Cala Millor
Mallorca, 13-17 Oct. 2013

Sensor- und Motor- Homunculus.

Natural History Museum, London

Contents

www.gfai.de/~heinz












Abstract
Convolution
A Small Interference Network
Construction of Transfer Functions
Applying a Convolution
Spike Output
Frequency Analysis
Unipolar or Bipolar Signal Levels?
Interpreting Bursts
Examples

Abstract











Compared with technical sensors, sound and code analysis of nerve
system is fascinating
We differ between the whisper of the wind or the branding of waves,
we know the songs of birds, we hear dangerous noises of a defect car
engine, we feel, if an airplane starts
And we speak and understand languages: Do we have a chance, to
interprete the function of a nerve net on the level of net structure?
We try to analyze a simplest delaying network in nerve-like structure
Our net consists of delays T and weights W
Basing on Interference Network (IN) abstraction we transform the net
into a transfer function H of a linear time-invariant system (LTI-system)
We use convolution between input time-function and transfer function
to find the "behaviour" of the LTI-system
* The work bases on the book "Neuronale Interferenzen", Kap.8b, S.181,
download: www.gfai.de/~heinz/publications/NI/index.htm

heinz@gfai.de

www.gfai.de/~heinz

3

Convolution


"Faltung" (terminus created by Felix Bernstein, 1922):
t

y(t )  x(t ) * h(t )   x(t   ) h( ) d
0



Discrete form (Cauchy product):
n

yn   hk xnk
k 0



Example:
FIR-filter
as direct
implementation
of convolution,
form: Y = X * S

heinz@gfai.de

www.gfai.de/~heinz

4

A Small Interference Network


Form:

Our Abstraction:

1

x(t)

N'

y(t)

x(t)

n

heinz@gfai.de

w1 N'

w2

N

+

...

N

...

2

y(t)

wn

Delay vector:

T  [ 1 , 2 ,..., n ]

Weight vector:

W  [w1 , w2 ,...,wn ]

Transfer function:

1 n
y(t )   wi x(t   i )
n i

www.gfai.de/~heinz

5

Construction of Transfer Function H
(Transfer function of LTI-system)
Discrete transfer function H seen as discrete time function with sample
distance ts = 1/fs and with growing index i :

i = [… 2, 3, 4, 5, 6, 7, 8, 9, …]

fs = 1/ts

H = [… wi-1, wi, wi+1, wi+2, wi+3, wi+4, wi+5, wi+6, …]



Length of H is greater the delay difference:



Construction of the transfer function of the net by addition of weights:
H(j) = H(j) + W(i) mit j = T(i) :

length(H) ≥ max(T) – min(T)

H(T(i)) = H(T(i)) + W(i)
heinz@gfai.de

www.gfai.de/~heinz

6

Get Transfer Function with Scilab
function [H] = trans(T,W,fs);
if length(T) == length(W) then
T = T * fs;
// apply sample rate of H
T = round(T);
// T becomes index: integer
H = 1:max(T); H = H * 0;
// create an empty H
for i = 1:length(T),
// for all T(i), W(i)
j = T(i),
// delay becomes the H-index j
H(j) = H(j) + W(i),
// add the weight to H
end // for
else // if
printf('\n\nerror: T and W have different size\n');
end // if
endfunction;
H is the transfer function of a LTI-system!
heinz@gfai.de

www.gfai.de/~heinz

7

Applying a Convolution
What is the system answer Y for different input functions X ?
It is simple the convolution with H , the multiplication of time series

y(t) = h(t) * x(t)


Using vectors

Y=X*H


X

H

Y

Scilab form

Y = convol(H,X)


Fourier Analysis of H

F = abs(fft(H))

heinz@gfai.de

www.gfai.de/~heinz

8

Barker Codes and Spikes






Hebbian rule in neuro-science shows, that a neuron needs high
synchronous emissions to learn
We need spikes at the output of the neuron
Barker codes maximize spike-like output of long sequences in
RADAR technology:
Example:

H = [1, 1, 1, -1, 1]
X = rev(H)

(Barker code no. 5)

Y = convol(X,H) = [1, 0, 1, 0, 5, 0, 1, 0, 1]


But neurons don't have negative signal values!
What can we do?

heinz@gfai.de

www.gfai.de/~heinz

9

Spectral Analysis of Transfer Function H
j

F (e ) 



 H (n)e

 jn

n  




FFT of any unipolar transfer function shows the maximum for frequency
f = 0 Hz (DC)
It is not possible to learn with unipolar H ; codes are AC:

Highest level at 0 Hz

Unipolar
{0…1}

Bipolar
{-1…1}

heinz@gfai.de

www.gfai.de/~heinz

10

Unipolar or Bipolar Signal Levels?


Unipolar signals, unipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{-1…0…1}

11

Unipolar or Bipolar Signal Levels?


Bipolar signals, bipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{0…1}

12

Unipolar or Bipolar Signal Levels?


Unipolar signals, bipolar synapses (neuron)

heinz@gfai.de

www.gfai.de/~heinz

{0…1} {-1…1}

13

Unipolar or Bipolar Signal Levels?
unipolar signals and bipolar synapses (neuron)
X, Y:
uni {0…1}
H:
bi {-1…1}
Big surprize:
 Using unipolar signals X, Y and bipolar H, the system is not significant
worse compared to the best case uni/uni

Test it:
 Use relating Scilab sources under
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv
Conclusion
 Nerve systems do not need bipolar signals to detect code and sound, if
the synapses are bipolar (inhibiting or exciting)!
heinz@gfai.de

www.gfai.de/~heinz

14

Interpreting Bursts


Noisy groups of pulses are known at different locations in nerve system



Is it possible, to find the net structure behind them?

heinz@gfai.de

www.gfai.de/~heinz

15

The Inversive Procedure


We interprete a burst as transfer function H (seen as pulse response)
and reproduce the delays T and weights W of the network behind:
function [T,W] = net(H,fs);
// returns T and W
j=1;
// W-index j
for i=1:length(H)
// H-index i
if H(i) == 0 then ;
// do nothing
else
// write the value to W, the index to T
W(j) = H(i);
// value to W
T(j) = i;
// index to T
j = j+1;
// increment j
end;
// endif
end;
// endfor
T = T ./ fs;
// multiply with sample duration
T = T - min(T);
// scale to min: reduced T-vector
endfunction;

heinz@gfai.de

www.gfai.de/~heinz

16

Example H = f(T,W)


Delays T, weights W, transfer function H, reducing vectors: index r
Delays:
Weights:

Reduced T, W:

T  [ 1 , 2 , 3 ]  [5, 3, 8]

W  [w1 , w2 , w3 ]  [1, 0.5, 1]
TR  [ R1 , R 2 , R3 ]  [0, 2, 5]
WR  [wR1 , wR 2 , wR3 ]  [.5, 1, 1]

Transfer function:

H  (w2 , 0, w1 , 0, 0, w3 )

H  0.5, 0, 1, 0, 0, 1

heinz@gfai.de

www.gfai.de/~heinz

17

Example
Key X and keyhole H
unipolar

max(FFT) at 0 Hz
(uni/uni)
heinz@gfai.de

www.gfai.de/~heinz

18

Conclusion









To characterize time- and frequency domain, we transform delays and
weights of a simplest interference network into a LTI transfer response
A procedure [H] = trans(T,W,fs) calculates the (time-discrete) transfer
function H (pulse response) of the net from delay vector T (delay mask)
and weight vector W
The FFT shows learning problems for unipolar signals and unipolar H
because of highest DC-value
A mixture between unipolar signals and bipolar transfer function (weights)
acts as good alternative (nerve nets)
Interpreting bursts as transfer functions (pulse responses), we design an
inverse procedure [T,W] = net(H,fs) that reconstructs the net structure
[T,W] from transfer function H
Find Scilab sources and the paper on the web
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv

heinz@gfai.de

www.gfai.de/~heinz

19

Relevance for ANN







The transfer function or pulse response H is responsible for all sequential
properties of a network: for code and sound generation or detection
The lecture shows, that smallest delays and delay differences change the
pulse response H of the network
Remembering the "Neural Networks" (NN, ANN) approach with layers
clocked by clock cycles we find, that the NN-approach destroyes the
sequential structure of each network complete
In no case ANN or NN are candidates to understand the function of nerve
like structures
Thinking about nerves we need interferential approches that does not
destroy the delay structure of the net.

heinz@gfai.de

www.gfai.de/~heinz

20

Und der Herr sprach: "So führte ich
euch auf den Weg der Erkenntnis.
Gehet nun, und traget die Botschaft in
die Welt hinaus!"

Vielen Dank für die
Aufmerksamkeit!

Erfolgreiche Google-Suchterme:
"Interferenznetze", "Mathematik des
Nervensystems", "Heinz",
"Akustische Kamera"
heinz@gfai.de

www.gfai.de/~heinz

Dr. G. Heinz, GFaI
Volmerstr.3
12489 Berlin
Tel. +49 (30) 814563-490
www.gfai.de/~heinz
heinz@gfai.de
21


Slide 2

www.gfai.de/~heinz

How Network Topology Defines its Behavior Serial Code Detection with Spiking Networks
Dr. Gerd Heinz

Gesellschaft zur Förderung
angewandter Informatik e.V
Berlin-Adlershof

Workshop „Autonomous Systems”
Herwig Unger & Wolfgang Halang
Hotel Sabina Playa, Cala Millor
Mallorca, 13-17 Oct. 2013

Sensor- und Motor- Homunculus.

Natural History Museum, London

Contents

www.gfai.de/~heinz












Abstract
Convolution
A Small Interference Network
Construction of Transfer Functions
Applying a Convolution
Spike Output
Frequency Analysis
Unipolar or Bipolar Signal Levels?
Interpreting Bursts
Examples

Abstract











Compared with technical sensors, sound and code analysis of nerve
system is fascinating
We differ between the whisper of the wind or the branding of waves,
we know the songs of birds, we hear dangerous noises of a defect car
engine, we feel, if an airplane starts
And we speak and understand languages: Do we have a chance, to
interprete the function of a nerve net on the level of net structure?
We try to analyze a simplest delaying network in nerve-like structure
Our net consists of delays T and weights W
Basing on Interference Network (IN) abstraction we transform the net
into a transfer function H of a linear time-invariant system (LTI-system)
We use convolution between input time-function and transfer function
to find the "behaviour" of the LTI-system
* The work bases on the book "Neuronale Interferenzen", Kap.8b, S.181,
download: www.gfai.de/~heinz/publications/NI/index.htm

heinz@gfai.de

www.gfai.de/~heinz

3

Convolution


"Faltung" (terminus created by Felix Bernstein, 1922):
t

y(t )  x(t ) * h(t )   x(t   ) h( ) d
0



Discrete form (Cauchy product):
n

yn   hk xnk
k 0



Example:
FIR-filter
as direct
implementation
of convolution,
form: Y = X * S

heinz@gfai.de

www.gfai.de/~heinz

4

A Small Interference Network


Form:

Our Abstraction:

1

x(t)

N'

y(t)

x(t)

n

heinz@gfai.de

w1 N'

w2

N

+

...

N

...

2

y(t)

wn

Delay vector:

T  [ 1 , 2 ,..., n ]

Weight vector:

W  [w1 , w2 ,...,wn ]

Transfer function:

1 n
y(t )   wi x(t   i )
n i

www.gfai.de/~heinz

5

Construction of Transfer Function H
(Transfer function of LTI-system)
Discrete transfer function H seen as discrete time function with sample
distance ts = 1/fs and with growing index i :

i = [… 2, 3, 4, 5, 6, 7, 8, 9, …]

fs = 1/ts

H = [… wi-1, wi, wi+1, wi+2, wi+3, wi+4, wi+5, wi+6, …]



Length of H is greater the delay difference:



Construction of the transfer function of the net by addition of weights:
H(j) = H(j) + W(i) mit j = T(i) :

length(H) ≥ max(T) – min(T)

H(T(i)) = H(T(i)) + W(i)
heinz@gfai.de

www.gfai.de/~heinz

6

Get Transfer Function with Scilab
function [H] = trans(T,W,fs);
if length(T) == length(W) then
T = T * fs;
// apply sample rate of H
T = round(T);
// T becomes index: integer
H = 1:max(T); H = H * 0;
// create an empty H
for i = 1:length(T),
// for all T(i), W(i)
j = T(i),
// delay becomes the H-index j
H(j) = H(j) + W(i),
// add the weight to H
end // for
else // if
printf('\n\nerror: T and W have different size\n');
end // if
endfunction;
H is the transfer function of a LTI-system!
heinz@gfai.de

www.gfai.de/~heinz

7

Applying a Convolution
What is the system answer Y for different input functions X ?
It is simple the convolution with H , the multiplication of time series

y(t) = h(t) * x(t)


Using vectors

Y=X*H


X

H

Y

Scilab form

Y = convol(H,X)


Fourier Analysis of H

F = abs(fft(H))

heinz@gfai.de

www.gfai.de/~heinz

8

Barker Codes and Spikes






Hebbian rule in neuro-science shows, that a neuron needs high
synchronous emissions to learn
We need spikes at the output of the neuron
Barker codes maximize spike-like output of long sequences in
RADAR technology:
Example:

H = [1, 1, 1, -1, 1]
X = rev(H)

(Barker code no. 5)

Y = convol(X,H) = [1, 0, 1, 0, 5, 0, 1, 0, 1]


But neurons don't have negative signal values!
What can we do?

heinz@gfai.de

www.gfai.de/~heinz

9

Spectral Analysis of Transfer Function H
j

F (e ) 



 H (n)e

 jn

n  




FFT of any unipolar transfer function shows the maximum for frequency
f = 0 Hz (DC)
It is not possible to learn with unipolar H ; codes are AC:

Highest level at 0 Hz

Unipolar
{0…1}

Bipolar
{-1…1}

heinz@gfai.de

www.gfai.de/~heinz

10

Unipolar or Bipolar Signal Levels?


Unipolar signals, unipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{-1…0…1}

11

Unipolar or Bipolar Signal Levels?


Bipolar signals, bipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{0…1}

12

Unipolar or Bipolar Signal Levels?


Unipolar signals, bipolar synapses (neuron)

heinz@gfai.de

www.gfai.de/~heinz

{0…1} {-1…1}

13

Unipolar or Bipolar Signal Levels?
unipolar signals and bipolar synapses (neuron)
X, Y:
uni {0…1}
H:
bi {-1…1}
Big surprize:
 Using unipolar signals X, Y and bipolar H, the system is not significant
worse compared to the best case uni/uni

Test it:
 Use relating Scilab sources under
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv
Conclusion
 Nerve systems do not need bipolar signals to detect code and sound, if
the synapses are bipolar (inhibiting or exciting)!
heinz@gfai.de

www.gfai.de/~heinz

14

Interpreting Bursts


Noisy groups of pulses are known at different locations in nerve system



Is it possible, to find the net structure behind them?

heinz@gfai.de

www.gfai.de/~heinz

15

The Inversive Procedure


We interprete a burst as transfer function H (seen as pulse response)
and reproduce the delays T and weights W of the network behind:
function [T,W] = net(H,fs);
// returns T and W
j=1;
// W-index j
for i=1:length(H)
// H-index i
if H(i) == 0 then ;
// do nothing
else
// write the value to W, the index to T
W(j) = H(i);
// value to W
T(j) = i;
// index to T
j = j+1;
// increment j
end;
// endif
end;
// endfor
T = T ./ fs;
// multiply with sample duration
T = T - min(T);
// scale to min: reduced T-vector
endfunction;

heinz@gfai.de

www.gfai.de/~heinz

16

Example H = f(T,W)


Delays T, weights W, transfer function H, reducing vectors: index r
Delays:
Weights:

Reduced T, W:

T  [ 1 , 2 , 3 ]  [5, 3, 8]

W  [w1 , w2 , w3 ]  [1, 0.5, 1]
TR  [ R1 , R 2 , R3 ]  [0, 2, 5]
WR  [wR1 , wR 2 , wR3 ]  [.5, 1, 1]

Transfer function:

H  (w2 , 0, w1 , 0, 0, w3 )

H  0.5, 0, 1, 0, 0, 1

heinz@gfai.de

www.gfai.de/~heinz

17

Example
Key X and keyhole H
unipolar

max(FFT) at 0 Hz
(uni/uni)
heinz@gfai.de

www.gfai.de/~heinz

18

Conclusion









To characterize time- and frequency domain, we transform delays and
weights of a simplest interference network into a LTI transfer response
A procedure [H] = trans(T,W,fs) calculates the (time-discrete) transfer
function H (pulse response) of the net from delay vector T (delay mask)
and weight vector W
The FFT shows learning problems for unipolar signals and unipolar H
because of highest DC-value
A mixture between unipolar signals and bipolar transfer function (weights)
acts as good alternative (nerve nets)
Interpreting bursts as transfer functions (pulse responses), we design an
inverse procedure [T,W] = net(H,fs) that reconstructs the net structure
[T,W] from transfer function H
Find Scilab sources and the paper on the web
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv

heinz@gfai.de

www.gfai.de/~heinz

19

Relevance for ANN







The transfer function or pulse response H is responsible for all sequential
properties of a network: for code and sound generation or detection
The lecture shows, that smallest delays and delay differences change the
pulse response H of the network
Remembering the "Neural Networks" (NN, ANN) approach with layers
clocked by clock cycles we find, that the NN-approach destroyes the
sequential structure of each network complete
In no case ANN or NN are candidates to understand the function of nerve
like structures
Thinking about nerves we need interferential approches that does not
destroy the delay structure of the net.

heinz@gfai.de

www.gfai.de/~heinz

20

Und der Herr sprach: "So führte ich
euch auf den Weg der Erkenntnis.
Gehet nun, und traget die Botschaft in
die Welt hinaus!"

Vielen Dank für die
Aufmerksamkeit!

Erfolgreiche Google-Suchterme:
"Interferenznetze", "Mathematik des
Nervensystems", "Heinz",
"Akustische Kamera"
heinz@gfai.de

www.gfai.de/~heinz

Dr. G. Heinz, GFaI
Volmerstr.3
12489 Berlin
Tel. +49 (30) 814563-490
www.gfai.de/~heinz
heinz@gfai.de
21


Slide 3

www.gfai.de/~heinz

How Network Topology Defines its Behavior Serial Code Detection with Spiking Networks
Dr. Gerd Heinz

Gesellschaft zur Förderung
angewandter Informatik e.V
Berlin-Adlershof

Workshop „Autonomous Systems”
Herwig Unger & Wolfgang Halang
Hotel Sabina Playa, Cala Millor
Mallorca, 13-17 Oct. 2013

Sensor- und Motor- Homunculus.

Natural History Museum, London

Contents

www.gfai.de/~heinz












Abstract
Convolution
A Small Interference Network
Construction of Transfer Functions
Applying a Convolution
Spike Output
Frequency Analysis
Unipolar or Bipolar Signal Levels?
Interpreting Bursts
Examples

Abstract











Compared with technical sensors, sound and code analysis of nerve
system is fascinating
We differ between the whisper of the wind or the branding of waves,
we know the songs of birds, we hear dangerous noises of a defect car
engine, we feel, if an airplane starts
And we speak and understand languages: Do we have a chance, to
interprete the function of a nerve net on the level of net structure?
We try to analyze a simplest delaying network in nerve-like structure
Our net consists of delays T and weights W
Basing on Interference Network (IN) abstraction we transform the net
into a transfer function H of a linear time-invariant system (LTI-system)
We use convolution between input time-function and transfer function
to find the "behaviour" of the LTI-system
* The work bases on the book "Neuronale Interferenzen", Kap.8b, S.181,
download: www.gfai.de/~heinz/publications/NI/index.htm

heinz@gfai.de

www.gfai.de/~heinz

3

Convolution


"Faltung" (terminus created by Felix Bernstein, 1922):
t

y(t )  x(t ) * h(t )   x(t   ) h( ) d
0



Discrete form (Cauchy product):
n

yn   hk xnk
k 0



Example:
FIR-filter
as direct
implementation
of convolution,
form: Y = X * S

heinz@gfai.de

www.gfai.de/~heinz

4

A Small Interference Network


Form:

Our Abstraction:

1

x(t)

N'

y(t)

x(t)

n

heinz@gfai.de

w1 N'

w2

N

+

...

N

...

2

y(t)

wn

Delay vector:

T  [ 1 , 2 ,..., n ]

Weight vector:

W  [w1 , w2 ,...,wn ]

Transfer function:

1 n
y(t )   wi x(t   i )
n i

www.gfai.de/~heinz

5

Construction of Transfer Function H
(Transfer function of LTI-system)
Discrete transfer function H seen as discrete time function with sample
distance ts = 1/fs and with growing index i :

i = [… 2, 3, 4, 5, 6, 7, 8, 9, …]

fs = 1/ts

H = [… wi-1, wi, wi+1, wi+2, wi+3, wi+4, wi+5, wi+6, …]



Length of H is greater the delay difference:



Construction of the transfer function of the net by addition of weights:
H(j) = H(j) + W(i) mit j = T(i) :

length(H) ≥ max(T) – min(T)

H(T(i)) = H(T(i)) + W(i)
heinz@gfai.de

www.gfai.de/~heinz

6

Get Transfer Function with Scilab
function [H] = trans(T,W,fs);
if length(T) == length(W) then
T = T * fs;
// apply sample rate of H
T = round(T);
// T becomes index: integer
H = 1:max(T); H = H * 0;
// create an empty H
for i = 1:length(T),
// for all T(i), W(i)
j = T(i),
// delay becomes the H-index j
H(j) = H(j) + W(i),
// add the weight to H
end // for
else // if
printf('\n\nerror: T and W have different size\n');
end // if
endfunction;
H is the transfer function of a LTI-system!
heinz@gfai.de

www.gfai.de/~heinz

7

Applying a Convolution
What is the system answer Y for different input functions X ?
It is simple the convolution with H , the multiplication of time series

y(t) = h(t) * x(t)


Using vectors

Y=X*H


X

H

Y

Scilab form

Y = convol(H,X)


Fourier Analysis of H

F = abs(fft(H))

heinz@gfai.de

www.gfai.de/~heinz

8

Barker Codes and Spikes






Hebbian rule in neuro-science shows, that a neuron needs high
synchronous emissions to learn
We need spikes at the output of the neuron
Barker codes maximize spike-like output of long sequences in
RADAR technology:
Example:

H = [1, 1, 1, -1, 1]
X = rev(H)

(Barker code no. 5)

Y = convol(X,H) = [1, 0, 1, 0, 5, 0, 1, 0, 1]


But neurons don't have negative signal values!
What can we do?

heinz@gfai.de

www.gfai.de/~heinz

9

Spectral Analysis of Transfer Function H
j

F (e ) 



 H (n)e

 jn

n  




FFT of any unipolar transfer function shows the maximum for frequency
f = 0 Hz (DC)
It is not possible to learn with unipolar H ; codes are AC:

Highest level at 0 Hz

Unipolar
{0…1}

Bipolar
{-1…1}

heinz@gfai.de

www.gfai.de/~heinz

10

Unipolar or Bipolar Signal Levels?


Unipolar signals, unipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{-1…0…1}

11

Unipolar or Bipolar Signal Levels?


Bipolar signals, bipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{0…1}

12

Unipolar or Bipolar Signal Levels?


Unipolar signals, bipolar synapses (neuron)

heinz@gfai.de

www.gfai.de/~heinz

{0…1} {-1…1}

13

Unipolar or Bipolar Signal Levels?
unipolar signals and bipolar synapses (neuron)
X, Y:
uni {0…1}
H:
bi {-1…1}
Big surprize:
 Using unipolar signals X, Y and bipolar H, the system is not significant
worse compared to the best case uni/uni

Test it:
 Use relating Scilab sources under
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv
Conclusion
 Nerve systems do not need bipolar signals to detect code and sound, if
the synapses are bipolar (inhibiting or exciting)!
heinz@gfai.de

www.gfai.de/~heinz

14

Interpreting Bursts


Noisy groups of pulses are known at different locations in nerve system



Is it possible, to find the net structure behind them?

heinz@gfai.de

www.gfai.de/~heinz

15

The Inversive Procedure


We interprete a burst as transfer function H (seen as pulse response)
and reproduce the delays T and weights W of the network behind:
function [T,W] = net(H,fs);
// returns T and W
j=1;
// W-index j
for i=1:length(H)
// H-index i
if H(i) == 0 then ;
// do nothing
else
// write the value to W, the index to T
W(j) = H(i);
// value to W
T(j) = i;
// index to T
j = j+1;
// increment j
end;
// endif
end;
// endfor
T = T ./ fs;
// multiply with sample duration
T = T - min(T);
// scale to min: reduced T-vector
endfunction;

heinz@gfai.de

www.gfai.de/~heinz

16

Example H = f(T,W)


Delays T, weights W, transfer function H, reducing vectors: index r
Delays:
Weights:

Reduced T, W:

T  [ 1 , 2 , 3 ]  [5, 3, 8]

W  [w1 , w2 , w3 ]  [1, 0.5, 1]
TR  [ R1 , R 2 , R3 ]  [0, 2, 5]
WR  [wR1 , wR 2 , wR3 ]  [.5, 1, 1]

Transfer function:

H  (w2 , 0, w1 , 0, 0, w3 )

H  0.5, 0, 1, 0, 0, 1

heinz@gfai.de

www.gfai.de/~heinz

17

Example
Key X and keyhole H
unipolar

max(FFT) at 0 Hz
(uni/uni)
heinz@gfai.de

www.gfai.de/~heinz

18

Conclusion









To characterize time- and frequency domain, we transform delays and
weights of a simplest interference network into a LTI transfer response
A procedure [H] = trans(T,W,fs) calculates the (time-discrete) transfer
function H (pulse response) of the net from delay vector T (delay mask)
and weight vector W
The FFT shows learning problems for unipolar signals and unipolar H
because of highest DC-value
A mixture between unipolar signals and bipolar transfer function (weights)
acts as good alternative (nerve nets)
Interpreting bursts as transfer functions (pulse responses), we design an
inverse procedure [T,W] = net(H,fs) that reconstructs the net structure
[T,W] from transfer function H
Find Scilab sources and the paper on the web
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv

heinz@gfai.de

www.gfai.de/~heinz

19

Relevance for ANN







The transfer function or pulse response H is responsible for all sequential
properties of a network: for code and sound generation or detection
The lecture shows, that smallest delays and delay differences change the
pulse response H of the network
Remembering the "Neural Networks" (NN, ANN) approach with layers
clocked by clock cycles we find, that the NN-approach destroyes the
sequential structure of each network complete
In no case ANN or NN are candidates to understand the function of nerve
like structures
Thinking about nerves we need interferential approches that does not
destroy the delay structure of the net.

heinz@gfai.de

www.gfai.de/~heinz

20

Und der Herr sprach: "So führte ich
euch auf den Weg der Erkenntnis.
Gehet nun, und traget die Botschaft in
die Welt hinaus!"

Vielen Dank für die
Aufmerksamkeit!

Erfolgreiche Google-Suchterme:
"Interferenznetze", "Mathematik des
Nervensystems", "Heinz",
"Akustische Kamera"
heinz@gfai.de

www.gfai.de/~heinz

Dr. G. Heinz, GFaI
Volmerstr.3
12489 Berlin
Tel. +49 (30) 814563-490
www.gfai.de/~heinz
heinz@gfai.de
21


Slide 4

www.gfai.de/~heinz

How Network Topology Defines its Behavior Serial Code Detection with Spiking Networks
Dr. Gerd Heinz

Gesellschaft zur Förderung
angewandter Informatik e.V
Berlin-Adlershof

Workshop „Autonomous Systems”
Herwig Unger & Wolfgang Halang
Hotel Sabina Playa, Cala Millor
Mallorca, 13-17 Oct. 2013

Sensor- und Motor- Homunculus.

Natural History Museum, London

Contents

www.gfai.de/~heinz












Abstract
Convolution
A Small Interference Network
Construction of Transfer Functions
Applying a Convolution
Spike Output
Frequency Analysis
Unipolar or Bipolar Signal Levels?
Interpreting Bursts
Examples

Abstract











Compared with technical sensors, sound and code analysis of nerve
system is fascinating
We differ between the whisper of the wind or the branding of waves,
we know the songs of birds, we hear dangerous noises of a defect car
engine, we feel, if an airplane starts
And we speak and understand languages: Do we have a chance, to
interprete the function of a nerve net on the level of net structure?
We try to analyze a simplest delaying network in nerve-like structure
Our net consists of delays T and weights W
Basing on Interference Network (IN) abstraction we transform the net
into a transfer function H of a linear time-invariant system (LTI-system)
We use convolution between input time-function and transfer function
to find the "behaviour" of the LTI-system
* The work bases on the book "Neuronale Interferenzen", Kap.8b, S.181,
download: www.gfai.de/~heinz/publications/NI/index.htm

heinz@gfai.de

www.gfai.de/~heinz

3

Convolution


"Faltung" (terminus created by Felix Bernstein, 1922):
t

y(t )  x(t ) * h(t )   x(t   ) h( ) d
0



Discrete form (Cauchy product):
n

yn   hk xnk
k 0



Example:
FIR-filter
as direct
implementation
of convolution,
form: Y = X * S

heinz@gfai.de

www.gfai.de/~heinz

4

A Small Interference Network


Form:

Our Abstraction:

1

x(t)

N'

y(t)

x(t)

n

heinz@gfai.de

w1 N'

w2

N

+

...

N

...

2

y(t)

wn

Delay vector:

T  [ 1 , 2 ,..., n ]

Weight vector:

W  [w1 , w2 ,...,wn ]

Transfer function:

1 n
y(t )   wi x(t   i )
n i

www.gfai.de/~heinz

5

Construction of Transfer Function H
(Transfer function of LTI-system)
Discrete transfer function H seen as discrete time function with sample
distance ts = 1/fs and with growing index i :

i = [… 2, 3, 4, 5, 6, 7, 8, 9, …]

fs = 1/ts

H = [… wi-1, wi, wi+1, wi+2, wi+3, wi+4, wi+5, wi+6, …]



Length of H is greater the delay difference:



Construction of the transfer function of the net by addition of weights:
H(j) = H(j) + W(i) mit j = T(i) :

length(H) ≥ max(T) – min(T)

H(T(i)) = H(T(i)) + W(i)
heinz@gfai.de

www.gfai.de/~heinz

6

Get Transfer Function with Scilab
function [H] = trans(T,W,fs);
if length(T) == length(W) then
T = T * fs;
// apply sample rate of H
T = round(T);
// T becomes index: integer
H = 1:max(T); H = H * 0;
// create an empty H
for i = 1:length(T),
// for all T(i), W(i)
j = T(i),
// delay becomes the H-index j
H(j) = H(j) + W(i),
// add the weight to H
end // for
else // if
printf('\n\nerror: T and W have different size\n');
end // if
endfunction;
H is the transfer function of a LTI-system!
heinz@gfai.de

www.gfai.de/~heinz

7

Applying a Convolution
What is the system answer Y for different input functions X ?
It is simple the convolution with H , the multiplication of time series

y(t) = h(t) * x(t)


Using vectors

Y=X*H


X

H

Y

Scilab form

Y = convol(H,X)


Fourier Analysis of H

F = abs(fft(H))

heinz@gfai.de

www.gfai.de/~heinz

8

Barker Codes and Spikes






Hebbian rule in neuro-science shows, that a neuron needs high
synchronous emissions to learn
We need spikes at the output of the neuron
Barker codes maximize spike-like output of long sequences in
RADAR technology:
Example:

H = [1, 1, 1, -1, 1]
X = rev(H)

(Barker code no. 5)

Y = convol(X,H) = [1, 0, 1, 0, 5, 0, 1, 0, 1]


But neurons don't have negative signal values!
What can we do?

heinz@gfai.de

www.gfai.de/~heinz

9

Spectral Analysis of Transfer Function H
j

F (e ) 



 H (n)e

 jn

n  




FFT of any unipolar transfer function shows the maximum for frequency
f = 0 Hz (DC)
It is not possible to learn with unipolar H ; codes are AC:

Highest level at 0 Hz

Unipolar
{0…1}

Bipolar
{-1…1}

heinz@gfai.de

www.gfai.de/~heinz

10

Unipolar or Bipolar Signal Levels?


Unipolar signals, unipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{-1…0…1}

11

Unipolar or Bipolar Signal Levels?


Bipolar signals, bipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{0…1}

12

Unipolar or Bipolar Signal Levels?


Unipolar signals, bipolar synapses (neuron)

heinz@gfai.de

www.gfai.de/~heinz

{0…1} {-1…1}

13

Unipolar or Bipolar Signal Levels?
unipolar signals and bipolar synapses (neuron)
X, Y:
uni {0…1}
H:
bi {-1…1}
Big surprize:
 Using unipolar signals X, Y and bipolar H, the system is not significant
worse compared to the best case uni/uni

Test it:
 Use relating Scilab sources under
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv
Conclusion
 Nerve systems do not need bipolar signals to detect code and sound, if
the synapses are bipolar (inhibiting or exciting)!
heinz@gfai.de

www.gfai.de/~heinz

14

Interpreting Bursts


Noisy groups of pulses are known at different locations in nerve system



Is it possible, to find the net structure behind them?

heinz@gfai.de

www.gfai.de/~heinz

15

The Inversive Procedure


We interprete a burst as transfer function H (seen as pulse response)
and reproduce the delays T and weights W of the network behind:
function [T,W] = net(H,fs);
// returns T and W
j=1;
// W-index j
for i=1:length(H)
// H-index i
if H(i) == 0 then ;
// do nothing
else
// write the value to W, the index to T
W(j) = H(i);
// value to W
T(j) = i;
// index to T
j = j+1;
// increment j
end;
// endif
end;
// endfor
T = T ./ fs;
// multiply with sample duration
T = T - min(T);
// scale to min: reduced T-vector
endfunction;

heinz@gfai.de

www.gfai.de/~heinz

16

Example H = f(T,W)


Delays T, weights W, transfer function H, reducing vectors: index r
Delays:
Weights:

Reduced T, W:

T  [ 1 , 2 , 3 ]  [5, 3, 8]

W  [w1 , w2 , w3 ]  [1, 0.5, 1]
TR  [ R1 , R 2 , R3 ]  [0, 2, 5]
WR  [wR1 , wR 2 , wR3 ]  [.5, 1, 1]

Transfer function:

H  (w2 , 0, w1 , 0, 0, w3 )

H  0.5, 0, 1, 0, 0, 1

heinz@gfai.de

www.gfai.de/~heinz

17

Example
Key X and keyhole H
unipolar

max(FFT) at 0 Hz
(uni/uni)
heinz@gfai.de

www.gfai.de/~heinz

18

Conclusion









To characterize time- and frequency domain, we transform delays and
weights of a simplest interference network into a LTI transfer response
A procedure [H] = trans(T,W,fs) calculates the (time-discrete) transfer
function H (pulse response) of the net from delay vector T (delay mask)
and weight vector W
The FFT shows learning problems for unipolar signals and unipolar H
because of highest DC-value
A mixture between unipolar signals and bipolar transfer function (weights)
acts as good alternative (nerve nets)
Interpreting bursts as transfer functions (pulse responses), we design an
inverse procedure [T,W] = net(H,fs) that reconstructs the net structure
[T,W] from transfer function H
Find Scilab sources and the paper on the web
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv

heinz@gfai.de

www.gfai.de/~heinz

19

Relevance for ANN







The transfer function or pulse response H is responsible for all sequential
properties of a network: for code and sound generation or detection
The lecture shows, that smallest delays and delay differences change the
pulse response H of the network
Remembering the "Neural Networks" (NN, ANN) approach with layers
clocked by clock cycles we find, that the NN-approach destroyes the
sequential structure of each network complete
In no case ANN or NN are candidates to understand the function of nerve
like structures
Thinking about nerves we need interferential approches that does not
destroy the delay structure of the net.

heinz@gfai.de

www.gfai.de/~heinz

20

Und der Herr sprach: "So führte ich
euch auf den Weg der Erkenntnis.
Gehet nun, und traget die Botschaft in
die Welt hinaus!"

Vielen Dank für die
Aufmerksamkeit!

Erfolgreiche Google-Suchterme:
"Interferenznetze", "Mathematik des
Nervensystems", "Heinz",
"Akustische Kamera"
heinz@gfai.de

www.gfai.de/~heinz

Dr. G. Heinz, GFaI
Volmerstr.3
12489 Berlin
Tel. +49 (30) 814563-490
www.gfai.de/~heinz
heinz@gfai.de
21


Slide 5

www.gfai.de/~heinz

How Network Topology Defines its Behavior Serial Code Detection with Spiking Networks
Dr. Gerd Heinz

Gesellschaft zur Förderung
angewandter Informatik e.V
Berlin-Adlershof

Workshop „Autonomous Systems”
Herwig Unger & Wolfgang Halang
Hotel Sabina Playa, Cala Millor
Mallorca, 13-17 Oct. 2013

Sensor- und Motor- Homunculus.

Natural History Museum, London

Contents

www.gfai.de/~heinz












Abstract
Convolution
A Small Interference Network
Construction of Transfer Functions
Applying a Convolution
Spike Output
Frequency Analysis
Unipolar or Bipolar Signal Levels?
Interpreting Bursts
Examples

Abstract











Compared with technical sensors, sound and code analysis of nerve
system is fascinating
We differ between the whisper of the wind or the branding of waves,
we know the songs of birds, we hear dangerous noises of a defect car
engine, we feel, if an airplane starts
And we speak and understand languages: Do we have a chance, to
interprete the function of a nerve net on the level of net structure?
We try to analyze a simplest delaying network in nerve-like structure
Our net consists of delays T and weights W
Basing on Interference Network (IN) abstraction we transform the net
into a transfer function H of a linear time-invariant system (LTI-system)
We use convolution between input time-function and transfer function
to find the "behaviour" of the LTI-system
* The work bases on the book "Neuronale Interferenzen", Kap.8b, S.181,
download: www.gfai.de/~heinz/publications/NI/index.htm

heinz@gfai.de

www.gfai.de/~heinz

3

Convolution


"Faltung" (terminus created by Felix Bernstein, 1922):
t

y(t )  x(t ) * h(t )   x(t   ) h( ) d
0



Discrete form (Cauchy product):
n

yn   hk xnk
k 0



Example:
FIR-filter
as direct
implementation
of convolution,
form: Y = X * S

heinz@gfai.de

www.gfai.de/~heinz

4

A Small Interference Network


Form:

Our Abstraction:

1

x(t)

N'

y(t)

x(t)

n

heinz@gfai.de

w1 N'

w2

N

+

...

N

...

2

y(t)

wn

Delay vector:

T  [ 1 , 2 ,..., n ]

Weight vector:

W  [w1 , w2 ,...,wn ]

Transfer function:

1 n
y(t )   wi x(t   i )
n i

www.gfai.de/~heinz

5

Construction of Transfer Function H
(Transfer function of LTI-system)
Discrete transfer function H seen as discrete time function with sample
distance ts = 1/fs and with growing index i :

i = [… 2, 3, 4, 5, 6, 7, 8, 9, …]

fs = 1/ts

H = [… wi-1, wi, wi+1, wi+2, wi+3, wi+4, wi+5, wi+6, …]



Length of H is greater the delay difference:



Construction of the transfer function of the net by addition of weights:
H(j) = H(j) + W(i) mit j = T(i) :

length(H) ≥ max(T) – min(T)

H(T(i)) = H(T(i)) + W(i)
heinz@gfai.de

www.gfai.de/~heinz

6

Get Transfer Function with Scilab
function [H] = trans(T,W,fs);
if length(T) == length(W) then
T = T * fs;
// apply sample rate of H
T = round(T);
// T becomes index: integer
H = 1:max(T); H = H * 0;
// create an empty H
for i = 1:length(T),
// for all T(i), W(i)
j = T(i),
// delay becomes the H-index j
H(j) = H(j) + W(i),
// add the weight to H
end // for
else // if
printf('\n\nerror: T and W have different size\n');
end // if
endfunction;
H is the transfer function of a LTI-system!
heinz@gfai.de

www.gfai.de/~heinz

7

Applying a Convolution
What is the system answer Y for different input functions X ?
It is simple the convolution with H , the multiplication of time series

y(t) = h(t) * x(t)


Using vectors

Y=X*H


X

H

Y

Scilab form

Y = convol(H,X)


Fourier Analysis of H

F = abs(fft(H))

heinz@gfai.de

www.gfai.de/~heinz

8

Barker Codes and Spikes






Hebbian rule in neuro-science shows, that a neuron needs high
synchronous emissions to learn
We need spikes at the output of the neuron
Barker codes maximize spike-like output of long sequences in
RADAR technology:
Example:

H = [1, 1, 1, -1, 1]
X = rev(H)

(Barker code no. 5)

Y = convol(X,H) = [1, 0, 1, 0, 5, 0, 1, 0, 1]


But neurons don't have negative signal values!
What can we do?

heinz@gfai.de

www.gfai.de/~heinz

9

Spectral Analysis of Transfer Function H
j

F (e ) 



 H (n)e

 jn

n  




FFT of any unipolar transfer function shows the maximum for frequency
f = 0 Hz (DC)
It is not possible to learn with unipolar H ; codes are AC:

Highest level at 0 Hz

Unipolar
{0…1}

Bipolar
{-1…1}

heinz@gfai.de

www.gfai.de/~heinz

10

Unipolar or Bipolar Signal Levels?


Unipolar signals, unipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{-1…0…1}

11

Unipolar or Bipolar Signal Levels?


Bipolar signals, bipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{0…1}

12

Unipolar or Bipolar Signal Levels?


Unipolar signals, bipolar synapses (neuron)

heinz@gfai.de

www.gfai.de/~heinz

{0…1} {-1…1}

13

Unipolar or Bipolar Signal Levels?
unipolar signals and bipolar synapses (neuron)
X, Y:
uni {0…1}
H:
bi {-1…1}
Big surprize:
 Using unipolar signals X, Y and bipolar H, the system is not significant
worse compared to the best case uni/uni

Test it:
 Use relating Scilab sources under
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv
Conclusion
 Nerve systems do not need bipolar signals to detect code and sound, if
the synapses are bipolar (inhibiting or exciting)!
heinz@gfai.de

www.gfai.de/~heinz

14

Interpreting Bursts


Noisy groups of pulses are known at different locations in nerve system



Is it possible, to find the net structure behind them?

heinz@gfai.de

www.gfai.de/~heinz

15

The Inversive Procedure


We interprete a burst as transfer function H (seen as pulse response)
and reproduce the delays T and weights W of the network behind:
function [T,W] = net(H,fs);
// returns T and W
j=1;
// W-index j
for i=1:length(H)
// H-index i
if H(i) == 0 then ;
// do nothing
else
// write the value to W, the index to T
W(j) = H(i);
// value to W
T(j) = i;
// index to T
j = j+1;
// increment j
end;
// endif
end;
// endfor
T = T ./ fs;
// multiply with sample duration
T = T - min(T);
// scale to min: reduced T-vector
endfunction;

heinz@gfai.de

www.gfai.de/~heinz

16

Example H = f(T,W)


Delays T, weights W, transfer function H, reducing vectors: index r
Delays:
Weights:

Reduced T, W:

T  [ 1 , 2 , 3 ]  [5, 3, 8]

W  [w1 , w2 , w3 ]  [1, 0.5, 1]
TR  [ R1 , R 2 , R3 ]  [0, 2, 5]
WR  [wR1 , wR 2 , wR3 ]  [.5, 1, 1]

Transfer function:

H  (w2 , 0, w1 , 0, 0, w3 )

H  0.5, 0, 1, 0, 0, 1

heinz@gfai.de

www.gfai.de/~heinz

17

Example
Key X and keyhole H
unipolar

max(FFT) at 0 Hz
(uni/uni)
heinz@gfai.de

www.gfai.de/~heinz

18

Conclusion









To characterize time- and frequency domain, we transform delays and
weights of a simplest interference network into a LTI transfer response
A procedure [H] = trans(T,W,fs) calculates the (time-discrete) transfer
function H (pulse response) of the net from delay vector T (delay mask)
and weight vector W
The FFT shows learning problems for unipolar signals and unipolar H
because of highest DC-value
A mixture between unipolar signals and bipolar transfer function (weights)
acts as good alternative (nerve nets)
Interpreting bursts as transfer functions (pulse responses), we design an
inverse procedure [T,W] = net(H,fs) that reconstructs the net structure
[T,W] from transfer function H
Find Scilab sources and the paper on the web
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv

heinz@gfai.de

www.gfai.de/~heinz

19

Relevance for ANN







The transfer function or pulse response H is responsible for all sequential
properties of a network: for code and sound generation or detection
The lecture shows, that smallest delays and delay differences change the
pulse response H of the network
Remembering the "Neural Networks" (NN, ANN) approach with layers
clocked by clock cycles we find, that the NN-approach destroyes the
sequential structure of each network complete
In no case ANN or NN are candidates to understand the function of nerve
like structures
Thinking about nerves we need interferential approches that does not
destroy the delay structure of the net.

heinz@gfai.de

www.gfai.de/~heinz

20

Und der Herr sprach: "So führte ich
euch auf den Weg der Erkenntnis.
Gehet nun, und traget die Botschaft in
die Welt hinaus!"

Vielen Dank für die
Aufmerksamkeit!

Erfolgreiche Google-Suchterme:
"Interferenznetze", "Mathematik des
Nervensystems", "Heinz",
"Akustische Kamera"
heinz@gfai.de

www.gfai.de/~heinz

Dr. G. Heinz, GFaI
Volmerstr.3
12489 Berlin
Tel. +49 (30) 814563-490
www.gfai.de/~heinz
heinz@gfai.de
21


Slide 6

www.gfai.de/~heinz

How Network Topology Defines its Behavior Serial Code Detection with Spiking Networks
Dr. Gerd Heinz

Gesellschaft zur Förderung
angewandter Informatik e.V
Berlin-Adlershof

Workshop „Autonomous Systems”
Herwig Unger & Wolfgang Halang
Hotel Sabina Playa, Cala Millor
Mallorca, 13-17 Oct. 2013

Sensor- und Motor- Homunculus.

Natural History Museum, London

Contents

www.gfai.de/~heinz












Abstract
Convolution
A Small Interference Network
Construction of Transfer Functions
Applying a Convolution
Spike Output
Frequency Analysis
Unipolar or Bipolar Signal Levels?
Interpreting Bursts
Examples

Abstract











Compared with technical sensors, sound and code analysis of nerve
system is fascinating
We differ between the whisper of the wind or the branding of waves,
we know the songs of birds, we hear dangerous noises of a defect car
engine, we feel, if an airplane starts
And we speak and understand languages: Do we have a chance, to
interprete the function of a nerve net on the level of net structure?
We try to analyze a simplest delaying network in nerve-like structure
Our net consists of delays T and weights W
Basing on Interference Network (IN) abstraction we transform the net
into a transfer function H of a linear time-invariant system (LTI-system)
We use convolution between input time-function and transfer function
to find the "behaviour" of the LTI-system
* The work bases on the book "Neuronale Interferenzen", Kap.8b, S.181,
download: www.gfai.de/~heinz/publications/NI/index.htm

heinz@gfai.de

www.gfai.de/~heinz

3

Convolution


"Faltung" (terminus created by Felix Bernstein, 1922):
t

y(t )  x(t ) * h(t )   x(t   ) h( ) d
0



Discrete form (Cauchy product):
n

yn   hk xnk
k 0



Example:
FIR-filter
as direct
implementation
of convolution,
form: Y = X * S

heinz@gfai.de

www.gfai.de/~heinz

4

A Small Interference Network


Form:

Our Abstraction:

1

x(t)

N'

y(t)

x(t)

n

heinz@gfai.de

w1 N'

w2

N

+

...

N

...

2

y(t)

wn

Delay vector:

T  [ 1 , 2 ,..., n ]

Weight vector:

W  [w1 , w2 ,...,wn ]

Transfer function:

1 n
y(t )   wi x(t   i )
n i

www.gfai.de/~heinz

5

Construction of Transfer Function H
(Transfer function of LTI-system)
Discrete transfer function H seen as discrete time function with sample
distance ts = 1/fs and with growing index i :

i = [… 2, 3, 4, 5, 6, 7, 8, 9, …]

fs = 1/ts

H = [… wi-1, wi, wi+1, wi+2, wi+3, wi+4, wi+5, wi+6, …]



Length of H is greater the delay difference:



Construction of the transfer function of the net by addition of weights:
H(j) = H(j) + W(i) mit j = T(i) :

length(H) ≥ max(T) – min(T)

H(T(i)) = H(T(i)) + W(i)
heinz@gfai.de

www.gfai.de/~heinz

6

Get Transfer Function with Scilab
function [H] = trans(T,W,fs);
if length(T) == length(W) then
T = T * fs;
// apply sample rate of H
T = round(T);
// T becomes index: integer
H = 1:max(T); H = H * 0;
// create an empty H
for i = 1:length(T),
// for all T(i), W(i)
j = T(i),
// delay becomes the H-index j
H(j) = H(j) + W(i),
// add the weight to H
end // for
else // if
printf('\n\nerror: T and W have different size\n');
end // if
endfunction;
H is the transfer function of a LTI-system!
heinz@gfai.de

www.gfai.de/~heinz

7

Applying a Convolution
What is the system answer Y for different input functions X ?
It is simple the convolution with H , the multiplication of time series

y(t) = h(t) * x(t)


Using vectors

Y=X*H


X

H

Y

Scilab form

Y = convol(H,X)


Fourier Analysis of H

F = abs(fft(H))

heinz@gfai.de

www.gfai.de/~heinz

8

Barker Codes and Spikes






Hebbian rule in neuro-science shows, that a neuron needs high
synchronous emissions to learn
We need spikes at the output of the neuron
Barker codes maximize spike-like output of long sequences in
RADAR technology:
Example:

H = [1, 1, 1, -1, 1]
X = rev(H)

(Barker code no. 5)

Y = convol(X,H) = [1, 0, 1, 0, 5, 0, 1, 0, 1]


But neurons don't have negative signal values!
What can we do?

heinz@gfai.de

www.gfai.de/~heinz

9

Spectral Analysis of Transfer Function H
j

F (e ) 



 H (n)e

 jn

n  




FFT of any unipolar transfer function shows the maximum for frequency
f = 0 Hz (DC)
It is not possible to learn with unipolar H ; codes are AC:

Highest level at 0 Hz

Unipolar
{0…1}

Bipolar
{-1…1}

heinz@gfai.de

www.gfai.de/~heinz

10

Unipolar or Bipolar Signal Levels?


Unipolar signals, unipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{-1…0…1}

11

Unipolar or Bipolar Signal Levels?


Bipolar signals, bipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{0…1}

12

Unipolar or Bipolar Signal Levels?


Unipolar signals, bipolar synapses (neuron)

heinz@gfai.de

www.gfai.de/~heinz

{0…1} {-1…1}

13

Unipolar or Bipolar Signal Levels?
unipolar signals and bipolar synapses (neuron)
X, Y:
uni {0…1}
H:
bi {-1…1}
Big surprize:
 Using unipolar signals X, Y and bipolar H, the system is not significant
worse compared to the best case uni/uni

Test it:
 Use relating Scilab sources under
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv
Conclusion
 Nerve systems do not need bipolar signals to detect code and sound, if
the synapses are bipolar (inhibiting or exciting)!
heinz@gfai.de

www.gfai.de/~heinz

14

Interpreting Bursts


Noisy groups of pulses are known at different locations in nerve system



Is it possible, to find the net structure behind them?

heinz@gfai.de

www.gfai.de/~heinz

15

The Inversive Procedure


We interprete a burst as transfer function H (seen as pulse response)
and reproduce the delays T and weights W of the network behind:
function [T,W] = net(H,fs);
// returns T and W
j=1;
// W-index j
for i=1:length(H)
// H-index i
if H(i) == 0 then ;
// do nothing
else
// write the value to W, the index to T
W(j) = H(i);
// value to W
T(j) = i;
// index to T
j = j+1;
// increment j
end;
// endif
end;
// endfor
T = T ./ fs;
// multiply with sample duration
T = T - min(T);
// scale to min: reduced T-vector
endfunction;

heinz@gfai.de

www.gfai.de/~heinz

16

Example H = f(T,W)


Delays T, weights W, transfer function H, reducing vectors: index r
Delays:
Weights:

Reduced T, W:

T  [ 1 , 2 , 3 ]  [5, 3, 8]

W  [w1 , w2 , w3 ]  [1, 0.5, 1]
TR  [ R1 , R 2 , R3 ]  [0, 2, 5]
WR  [wR1 , wR 2 , wR3 ]  [.5, 1, 1]

Transfer function:

H  (w2 , 0, w1 , 0, 0, w3 )

H  0.5, 0, 1, 0, 0, 1

heinz@gfai.de

www.gfai.de/~heinz

17

Example
Key X and keyhole H
unipolar

max(FFT) at 0 Hz
(uni/uni)
heinz@gfai.de

www.gfai.de/~heinz

18

Conclusion









To characterize time- and frequency domain, we transform delays and
weights of a simplest interference network into a LTI transfer response
A procedure [H] = trans(T,W,fs) calculates the (time-discrete) transfer
function H (pulse response) of the net from delay vector T (delay mask)
and weight vector W
The FFT shows learning problems for unipolar signals and unipolar H
because of highest DC-value
A mixture between unipolar signals and bipolar transfer function (weights)
acts as good alternative (nerve nets)
Interpreting bursts as transfer functions (pulse responses), we design an
inverse procedure [T,W] = net(H,fs) that reconstructs the net structure
[T,W] from transfer function H
Find Scilab sources and the paper on the web
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv

heinz@gfai.de

www.gfai.de/~heinz

19

Relevance for ANN







The transfer function or pulse response H is responsible for all sequential
properties of a network: for code and sound generation or detection
The lecture shows, that smallest delays and delay differences change the
pulse response H of the network
Remembering the "Neural Networks" (NN, ANN) approach with layers
clocked by clock cycles we find, that the NN-approach destroyes the
sequential structure of each network complete
In no case ANN or NN are candidates to understand the function of nerve
like structures
Thinking about nerves we need interferential approches that does not
destroy the delay structure of the net.

heinz@gfai.de

www.gfai.de/~heinz

20

Und der Herr sprach: "So führte ich
euch auf den Weg der Erkenntnis.
Gehet nun, und traget die Botschaft in
die Welt hinaus!"

Vielen Dank für die
Aufmerksamkeit!

Erfolgreiche Google-Suchterme:
"Interferenznetze", "Mathematik des
Nervensystems", "Heinz",
"Akustische Kamera"
heinz@gfai.de

www.gfai.de/~heinz

Dr. G. Heinz, GFaI
Volmerstr.3
12489 Berlin
Tel. +49 (30) 814563-490
www.gfai.de/~heinz
heinz@gfai.de
21


Slide 7

www.gfai.de/~heinz

How Network Topology Defines its Behavior Serial Code Detection with Spiking Networks
Dr. Gerd Heinz

Gesellschaft zur Förderung
angewandter Informatik e.V
Berlin-Adlershof

Workshop „Autonomous Systems”
Herwig Unger & Wolfgang Halang
Hotel Sabina Playa, Cala Millor
Mallorca, 13-17 Oct. 2013

Sensor- und Motor- Homunculus.

Natural History Museum, London

Contents

www.gfai.de/~heinz












Abstract
Convolution
A Small Interference Network
Construction of Transfer Functions
Applying a Convolution
Spike Output
Frequency Analysis
Unipolar or Bipolar Signal Levels?
Interpreting Bursts
Examples

Abstract











Compared with technical sensors, sound and code analysis of nerve
system is fascinating
We differ between the whisper of the wind or the branding of waves,
we know the songs of birds, we hear dangerous noises of a defect car
engine, we feel, if an airplane starts
And we speak and understand languages: Do we have a chance, to
interprete the function of a nerve net on the level of net structure?
We try to analyze a simplest delaying network in nerve-like structure
Our net consists of delays T and weights W
Basing on Interference Network (IN) abstraction we transform the net
into a transfer function H of a linear time-invariant system (LTI-system)
We use convolution between input time-function and transfer function
to find the "behaviour" of the LTI-system
* The work bases on the book "Neuronale Interferenzen", Kap.8b, S.181,
download: www.gfai.de/~heinz/publications/NI/index.htm

heinz@gfai.de

www.gfai.de/~heinz

3

Convolution


"Faltung" (terminus created by Felix Bernstein, 1922):
t

y(t )  x(t ) * h(t )   x(t   ) h( ) d
0



Discrete form (Cauchy product):
n

yn   hk xnk
k 0



Example:
FIR-filter
as direct
implementation
of convolution,
form: Y = X * S

heinz@gfai.de

www.gfai.de/~heinz

4

A Small Interference Network


Form:

Our Abstraction:

1

x(t)

N'

y(t)

x(t)

n

heinz@gfai.de

w1 N'

w2

N

+

...

N

...

2

y(t)

wn

Delay vector:

T  [ 1 , 2 ,..., n ]

Weight vector:

W  [w1 , w2 ,...,wn ]

Transfer function:

1 n
y(t )   wi x(t   i )
n i

www.gfai.de/~heinz

5

Construction of Transfer Function H
(Transfer function of LTI-system)
Discrete transfer function H seen as discrete time function with sample
distance ts = 1/fs and with growing index i :

i = [… 2, 3, 4, 5, 6, 7, 8, 9, …]

fs = 1/ts

H = [… wi-1, wi, wi+1, wi+2, wi+3, wi+4, wi+5, wi+6, …]



Length of H is greater the delay difference:



Construction of the transfer function of the net by addition of weights:
H(j) = H(j) + W(i) mit j = T(i) :

length(H) ≥ max(T) – min(T)

H(T(i)) = H(T(i)) + W(i)
heinz@gfai.de

www.gfai.de/~heinz

6

Get Transfer Function with Scilab
function [H] = trans(T,W,fs);
if length(T) == length(W) then
T = T * fs;
// apply sample rate of H
T = round(T);
// T becomes index: integer
H = 1:max(T); H = H * 0;
// create an empty H
for i = 1:length(T),
// for all T(i), W(i)
j = T(i),
// delay becomes the H-index j
H(j) = H(j) + W(i),
// add the weight to H
end // for
else // if
printf('\n\nerror: T and W have different size\n');
end // if
endfunction;
H is the transfer function of a LTI-system!
heinz@gfai.de

www.gfai.de/~heinz

7

Applying a Convolution
What is the system answer Y for different input functions X ?
It is simple the convolution with H , the multiplication of time series

y(t) = h(t) * x(t)


Using vectors

Y=X*H


X

H

Y

Scilab form

Y = convol(H,X)


Fourier Analysis of H

F = abs(fft(H))

heinz@gfai.de

www.gfai.de/~heinz

8

Barker Codes and Spikes






Hebbian rule in neuro-science shows, that a neuron needs high
synchronous emissions to learn
We need spikes at the output of the neuron
Barker codes maximize spike-like output of long sequences in
RADAR technology:
Example:

H = [1, 1, 1, -1, 1]
X = rev(H)

(Barker code no. 5)

Y = convol(X,H) = [1, 0, 1, 0, 5, 0, 1, 0, 1]


But neurons don't have negative signal values!
What can we do?

heinz@gfai.de

www.gfai.de/~heinz

9

Spectral Analysis of Transfer Function H
j

F (e ) 



 H (n)e

 jn

n  




FFT of any unipolar transfer function shows the maximum for frequency
f = 0 Hz (DC)
It is not possible to learn with unipolar H ; codes are AC:

Highest level at 0 Hz

Unipolar
{0…1}

Bipolar
{-1…1}

heinz@gfai.de

www.gfai.de/~heinz

10

Unipolar or Bipolar Signal Levels?


Unipolar signals, unipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{-1…0…1}

11

Unipolar or Bipolar Signal Levels?


Bipolar signals, bipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{0…1}

12

Unipolar or Bipolar Signal Levels?


Unipolar signals, bipolar synapses (neuron)

heinz@gfai.de

www.gfai.de/~heinz

{0…1} {-1…1}

13

Unipolar or Bipolar Signal Levels?
unipolar signals and bipolar synapses (neuron)
X, Y:
uni {0…1}
H:
bi {-1…1}
Big surprize:
 Using unipolar signals X, Y and bipolar H, the system is not significant
worse compared to the best case uni/uni

Test it:
 Use relating Scilab sources under
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv
Conclusion
 Nerve systems do not need bipolar signals to detect code and sound, if
the synapses are bipolar (inhibiting or exciting)!
heinz@gfai.de

www.gfai.de/~heinz

14

Interpreting Bursts


Noisy groups of pulses are known at different locations in nerve system



Is it possible, to find the net structure behind them?

heinz@gfai.de

www.gfai.de/~heinz

15

The Inversive Procedure


We interprete a burst as transfer function H (seen as pulse response)
and reproduce the delays T and weights W of the network behind:
function [T,W] = net(H,fs);
// returns T and W
j=1;
// W-index j
for i=1:length(H)
// H-index i
if H(i) == 0 then ;
// do nothing
else
// write the value to W, the index to T
W(j) = H(i);
// value to W
T(j) = i;
// index to T
j = j+1;
// increment j
end;
// endif
end;
// endfor
T = T ./ fs;
// multiply with sample duration
T = T - min(T);
// scale to min: reduced T-vector
endfunction;

heinz@gfai.de

www.gfai.de/~heinz

16

Example H = f(T,W)


Delays T, weights W, transfer function H, reducing vectors: index r
Delays:
Weights:

Reduced T, W:

T  [ 1 , 2 , 3 ]  [5, 3, 8]

W  [w1 , w2 , w3 ]  [1, 0.5, 1]
TR  [ R1 , R 2 , R3 ]  [0, 2, 5]
WR  [wR1 , wR 2 , wR3 ]  [.5, 1, 1]

Transfer function:

H  (w2 , 0, w1 , 0, 0, w3 )

H  0.5, 0, 1, 0, 0, 1

heinz@gfai.de

www.gfai.de/~heinz

17

Example
Key X and keyhole H
unipolar

max(FFT) at 0 Hz
(uni/uni)
heinz@gfai.de

www.gfai.de/~heinz

18

Conclusion









To characterize time- and frequency domain, we transform delays and
weights of a simplest interference network into a LTI transfer response
A procedure [H] = trans(T,W,fs) calculates the (time-discrete) transfer
function H (pulse response) of the net from delay vector T (delay mask)
and weight vector W
The FFT shows learning problems for unipolar signals and unipolar H
because of highest DC-value
A mixture between unipolar signals and bipolar transfer function (weights)
acts as good alternative (nerve nets)
Interpreting bursts as transfer functions (pulse responses), we design an
inverse procedure [T,W] = net(H,fs) that reconstructs the net structure
[T,W] from transfer function H
Find Scilab sources and the paper on the web
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv

heinz@gfai.de

www.gfai.de/~heinz

19

Relevance for ANN







The transfer function or pulse response H is responsible for all sequential
properties of a network: for code and sound generation or detection
The lecture shows, that smallest delays and delay differences change the
pulse response H of the network
Remembering the "Neural Networks" (NN, ANN) approach with layers
clocked by clock cycles we find, that the NN-approach destroyes the
sequential structure of each network complete
In no case ANN or NN are candidates to understand the function of nerve
like structures
Thinking about nerves we need interferential approches that does not
destroy the delay structure of the net.

heinz@gfai.de

www.gfai.de/~heinz

20

Und der Herr sprach: "So führte ich
euch auf den Weg der Erkenntnis.
Gehet nun, und traget die Botschaft in
die Welt hinaus!"

Vielen Dank für die
Aufmerksamkeit!

Erfolgreiche Google-Suchterme:
"Interferenznetze", "Mathematik des
Nervensystems", "Heinz",
"Akustische Kamera"
heinz@gfai.de

www.gfai.de/~heinz

Dr. G. Heinz, GFaI
Volmerstr.3
12489 Berlin
Tel. +49 (30) 814563-490
www.gfai.de/~heinz
heinz@gfai.de
21


Slide 8

www.gfai.de/~heinz

How Network Topology Defines its Behavior Serial Code Detection with Spiking Networks
Dr. Gerd Heinz

Gesellschaft zur Förderung
angewandter Informatik e.V
Berlin-Adlershof

Workshop „Autonomous Systems”
Herwig Unger & Wolfgang Halang
Hotel Sabina Playa, Cala Millor
Mallorca, 13-17 Oct. 2013

Sensor- und Motor- Homunculus.

Natural History Museum, London

Contents

www.gfai.de/~heinz












Abstract
Convolution
A Small Interference Network
Construction of Transfer Functions
Applying a Convolution
Spike Output
Frequency Analysis
Unipolar or Bipolar Signal Levels?
Interpreting Bursts
Examples

Abstract











Compared with technical sensors, sound and code analysis of nerve
system is fascinating
We differ between the whisper of the wind or the branding of waves,
we know the songs of birds, we hear dangerous noises of a defect car
engine, we feel, if an airplane starts
And we speak and understand languages: Do we have a chance, to
interprete the function of a nerve net on the level of net structure?
We try to analyze a simplest delaying network in nerve-like structure
Our net consists of delays T and weights W
Basing on Interference Network (IN) abstraction we transform the net
into a transfer function H of a linear time-invariant system (LTI-system)
We use convolution between input time-function and transfer function
to find the "behaviour" of the LTI-system
* The work bases on the book "Neuronale Interferenzen", Kap.8b, S.181,
download: www.gfai.de/~heinz/publications/NI/index.htm

heinz@gfai.de

www.gfai.de/~heinz

3

Convolution


"Faltung" (terminus created by Felix Bernstein, 1922):
t

y(t )  x(t ) * h(t )   x(t   ) h( ) d
0



Discrete form (Cauchy product):
n

yn   hk xnk
k 0



Example:
FIR-filter
as direct
implementation
of convolution,
form: Y = X * S

heinz@gfai.de

www.gfai.de/~heinz

4

A Small Interference Network


Form:

Our Abstraction:

1

x(t)

N'

y(t)

x(t)

n

heinz@gfai.de

w1 N'

w2

N

+

...

N

...

2

y(t)

wn

Delay vector:

T  [ 1 , 2 ,..., n ]

Weight vector:

W  [w1 , w2 ,...,wn ]

Transfer function:

1 n
y(t )   wi x(t   i )
n i

www.gfai.de/~heinz

5

Construction of Transfer Function H
(Transfer function of LTI-system)
Discrete transfer function H seen as discrete time function with sample
distance ts = 1/fs and with growing index i :

i = [… 2, 3, 4, 5, 6, 7, 8, 9, …]

fs = 1/ts

H = [… wi-1, wi, wi+1, wi+2, wi+3, wi+4, wi+5, wi+6, …]



Length of H is greater the delay difference:



Construction of the transfer function of the net by addition of weights:
H(j) = H(j) + W(i) mit j = T(i) :

length(H) ≥ max(T) – min(T)

H(T(i)) = H(T(i)) + W(i)
heinz@gfai.de

www.gfai.de/~heinz

6

Get Transfer Function with Scilab
function [H] = trans(T,W,fs);
if length(T) == length(W) then
T = T * fs;
// apply sample rate of H
T = round(T);
// T becomes index: integer
H = 1:max(T); H = H * 0;
// create an empty H
for i = 1:length(T),
// for all T(i), W(i)
j = T(i),
// delay becomes the H-index j
H(j) = H(j) + W(i),
// add the weight to H
end // for
else // if
printf('\n\nerror: T and W have different size\n');
end // if
endfunction;
H is the transfer function of a LTI-system!
heinz@gfai.de

www.gfai.de/~heinz

7

Applying a Convolution
What is the system answer Y for different input functions X ?
It is simple the convolution with H , the multiplication of time series

y(t) = h(t) * x(t)


Using vectors

Y=X*H


X

H

Y

Scilab form

Y = convol(H,X)


Fourier Analysis of H

F = abs(fft(H))

heinz@gfai.de

www.gfai.de/~heinz

8

Barker Codes and Spikes






Hebbian rule in neuro-science shows, that a neuron needs high
synchronous emissions to learn
We need spikes at the output of the neuron
Barker codes maximize spike-like output of long sequences in
RADAR technology:
Example:

H = [1, 1, 1, -1, 1]
X = rev(H)

(Barker code no. 5)

Y = convol(X,H) = [1, 0, 1, 0, 5, 0, 1, 0, 1]


But neurons don't have negative signal values!
What can we do?

heinz@gfai.de

www.gfai.de/~heinz

9

Spectral Analysis of Transfer Function H
j

F (e ) 



 H (n)e

 jn

n  




FFT of any unipolar transfer function shows the maximum for frequency
f = 0 Hz (DC)
It is not possible to learn with unipolar H ; codes are AC:

Highest level at 0 Hz

Unipolar
{0…1}

Bipolar
{-1…1}

heinz@gfai.de

www.gfai.de/~heinz

10

Unipolar or Bipolar Signal Levels?


Unipolar signals, unipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{-1…0…1}

11

Unipolar or Bipolar Signal Levels?


Bipolar signals, bipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{0…1}

12

Unipolar or Bipolar Signal Levels?


Unipolar signals, bipolar synapses (neuron)

heinz@gfai.de

www.gfai.de/~heinz

{0…1} {-1…1}

13

Unipolar or Bipolar Signal Levels?
unipolar signals and bipolar synapses (neuron)
X, Y:
uni {0…1}
H:
bi {-1…1}
Big surprize:
 Using unipolar signals X, Y and bipolar H, the system is not significant
worse compared to the best case uni/uni

Test it:
 Use relating Scilab sources under
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv
Conclusion
 Nerve systems do not need bipolar signals to detect code and sound, if
the synapses are bipolar (inhibiting or exciting)!
heinz@gfai.de

www.gfai.de/~heinz

14

Interpreting Bursts


Noisy groups of pulses are known at different locations in nerve system



Is it possible, to find the net structure behind them?

heinz@gfai.de

www.gfai.de/~heinz

15

The Inversive Procedure


We interprete a burst as transfer function H (seen as pulse response)
and reproduce the delays T and weights W of the network behind:
function [T,W] = net(H,fs);
// returns T and W
j=1;
// W-index j
for i=1:length(H)
// H-index i
if H(i) == 0 then ;
// do nothing
else
// write the value to W, the index to T
W(j) = H(i);
// value to W
T(j) = i;
// index to T
j = j+1;
// increment j
end;
// endif
end;
// endfor
T = T ./ fs;
// multiply with sample duration
T = T - min(T);
// scale to min: reduced T-vector
endfunction;

heinz@gfai.de

www.gfai.de/~heinz

16

Example H = f(T,W)


Delays T, weights W, transfer function H, reducing vectors: index r
Delays:
Weights:

Reduced T, W:

T  [ 1 , 2 , 3 ]  [5, 3, 8]

W  [w1 , w2 , w3 ]  [1, 0.5, 1]
TR  [ R1 , R 2 , R3 ]  [0, 2, 5]
WR  [wR1 , wR 2 , wR3 ]  [.5, 1, 1]

Transfer function:

H  (w2 , 0, w1 , 0, 0, w3 )

H  0.5, 0, 1, 0, 0, 1

heinz@gfai.de

www.gfai.de/~heinz

17

Example
Key X and keyhole H
unipolar

max(FFT) at 0 Hz
(uni/uni)
heinz@gfai.de

www.gfai.de/~heinz

18

Conclusion









To characterize time- and frequency domain, we transform delays and
weights of a simplest interference network into a LTI transfer response
A procedure [H] = trans(T,W,fs) calculates the (time-discrete) transfer
function H (pulse response) of the net from delay vector T (delay mask)
and weight vector W
The FFT shows learning problems for unipolar signals and unipolar H
because of highest DC-value
A mixture between unipolar signals and bipolar transfer function (weights)
acts as good alternative (nerve nets)
Interpreting bursts as transfer functions (pulse responses), we design an
inverse procedure [T,W] = net(H,fs) that reconstructs the net structure
[T,W] from transfer function H
Find Scilab sources and the paper on the web
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv

heinz@gfai.de

www.gfai.de/~heinz

19

Relevance for ANN







The transfer function or pulse response H is responsible for all sequential
properties of a network: for code and sound generation or detection
The lecture shows, that smallest delays and delay differences change the
pulse response H of the network
Remembering the "Neural Networks" (NN, ANN) approach with layers
clocked by clock cycles we find, that the NN-approach destroyes the
sequential structure of each network complete
In no case ANN or NN are candidates to understand the function of nerve
like structures
Thinking about nerves we need interferential approches that does not
destroy the delay structure of the net.

heinz@gfai.de

www.gfai.de/~heinz

20

Und der Herr sprach: "So führte ich
euch auf den Weg der Erkenntnis.
Gehet nun, und traget die Botschaft in
die Welt hinaus!"

Vielen Dank für die
Aufmerksamkeit!

Erfolgreiche Google-Suchterme:
"Interferenznetze", "Mathematik des
Nervensystems", "Heinz",
"Akustische Kamera"
heinz@gfai.de

www.gfai.de/~heinz

Dr. G. Heinz, GFaI
Volmerstr.3
12489 Berlin
Tel. +49 (30) 814563-490
www.gfai.de/~heinz
heinz@gfai.de
21


Slide 9

www.gfai.de/~heinz

How Network Topology Defines its Behavior Serial Code Detection with Spiking Networks
Dr. Gerd Heinz

Gesellschaft zur Förderung
angewandter Informatik e.V
Berlin-Adlershof

Workshop „Autonomous Systems”
Herwig Unger & Wolfgang Halang
Hotel Sabina Playa, Cala Millor
Mallorca, 13-17 Oct. 2013

Sensor- und Motor- Homunculus.

Natural History Museum, London

Contents

www.gfai.de/~heinz












Abstract
Convolution
A Small Interference Network
Construction of Transfer Functions
Applying a Convolution
Spike Output
Frequency Analysis
Unipolar or Bipolar Signal Levels?
Interpreting Bursts
Examples

Abstract











Compared with technical sensors, sound and code analysis of nerve
system is fascinating
We differ between the whisper of the wind or the branding of waves,
we know the songs of birds, we hear dangerous noises of a defect car
engine, we feel, if an airplane starts
And we speak and understand languages: Do we have a chance, to
interprete the function of a nerve net on the level of net structure?
We try to analyze a simplest delaying network in nerve-like structure
Our net consists of delays T and weights W
Basing on Interference Network (IN) abstraction we transform the net
into a transfer function H of a linear time-invariant system (LTI-system)
We use convolution between input time-function and transfer function
to find the "behaviour" of the LTI-system
* The work bases on the book "Neuronale Interferenzen", Kap.8b, S.181,
download: www.gfai.de/~heinz/publications/NI/index.htm

heinz@gfai.de

www.gfai.de/~heinz

3

Convolution


"Faltung" (terminus created by Felix Bernstein, 1922):
t

y(t )  x(t ) * h(t )   x(t   ) h( ) d
0



Discrete form (Cauchy product):
n

yn   hk xnk
k 0



Example:
FIR-filter
as direct
implementation
of convolution,
form: Y = X * S

heinz@gfai.de

www.gfai.de/~heinz

4

A Small Interference Network


Form:

Our Abstraction:

1

x(t)

N'

y(t)

x(t)

n

heinz@gfai.de

w1 N'

w2

N

+

...

N

...

2

y(t)

wn

Delay vector:

T  [ 1 , 2 ,..., n ]

Weight vector:

W  [w1 , w2 ,...,wn ]

Transfer function:

1 n
y(t )   wi x(t   i )
n i

www.gfai.de/~heinz

5

Construction of Transfer Function H
(Transfer function of LTI-system)
Discrete transfer function H seen as discrete time function with sample
distance ts = 1/fs and with growing index i :

i = [… 2, 3, 4, 5, 6, 7, 8, 9, …]

fs = 1/ts

H = [… wi-1, wi, wi+1, wi+2, wi+3, wi+4, wi+5, wi+6, …]



Length of H is greater the delay difference:



Construction of the transfer function of the net by addition of weights:
H(j) = H(j) + W(i) mit j = T(i) :

length(H) ≥ max(T) – min(T)

H(T(i)) = H(T(i)) + W(i)
heinz@gfai.de

www.gfai.de/~heinz

6

Get Transfer Function with Scilab
function [H] = trans(T,W,fs);
if length(T) == length(W) then
T = T * fs;
// apply sample rate of H
T = round(T);
// T becomes index: integer
H = 1:max(T); H = H * 0;
// create an empty H
for i = 1:length(T),
// for all T(i), W(i)
j = T(i),
// delay becomes the H-index j
H(j) = H(j) + W(i),
// add the weight to H
end // for
else // if
printf('\n\nerror: T and W have different size\n');
end // if
endfunction;
H is the transfer function of a LTI-system!
heinz@gfai.de

www.gfai.de/~heinz

7

Applying a Convolution
What is the system answer Y for different input functions X ?
It is simple the convolution with H , the multiplication of time series

y(t) = h(t) * x(t)


Using vectors

Y=X*H


X

H

Y

Scilab form

Y = convol(H,X)


Fourier Analysis of H

F = abs(fft(H))

heinz@gfai.de

www.gfai.de/~heinz

8

Barker Codes and Spikes






Hebbian rule in neuro-science shows, that a neuron needs high
synchronous emissions to learn
We need spikes at the output of the neuron
Barker codes maximize spike-like output of long sequences in
RADAR technology:
Example:

H = [1, 1, 1, -1, 1]
X = rev(H)

(Barker code no. 5)

Y = convol(X,H) = [1, 0, 1, 0, 5, 0, 1, 0, 1]


But neurons don't have negative signal values!
What can we do?

heinz@gfai.de

www.gfai.de/~heinz

9

Spectral Analysis of Transfer Function H
j

F (e ) 



 H (n)e

 jn

n  




FFT of any unipolar transfer function shows the maximum for frequency
f = 0 Hz (DC)
It is not possible to learn with unipolar H ; codes are AC:

Highest level at 0 Hz

Unipolar
{0…1}

Bipolar
{-1…1}

heinz@gfai.de

www.gfai.de/~heinz

10

Unipolar or Bipolar Signal Levels?


Unipolar signals, unipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{-1…0…1}

11

Unipolar or Bipolar Signal Levels?


Bipolar signals, bipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{0…1}

12

Unipolar or Bipolar Signal Levels?


Unipolar signals, bipolar synapses (neuron)

heinz@gfai.de

www.gfai.de/~heinz

{0…1} {-1…1}

13

Unipolar or Bipolar Signal Levels?
unipolar signals and bipolar synapses (neuron)
X, Y:
uni {0…1}
H:
bi {-1…1}
Big surprize:
 Using unipolar signals X, Y and bipolar H, the system is not significant
worse compared to the best case uni/uni

Test it:
 Use relating Scilab sources under
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv
Conclusion
 Nerve systems do not need bipolar signals to detect code and sound, if
the synapses are bipolar (inhibiting or exciting)!
heinz@gfai.de

www.gfai.de/~heinz

14

Interpreting Bursts


Noisy groups of pulses are known at different locations in nerve system



Is it possible, to find the net structure behind them?

heinz@gfai.de

www.gfai.de/~heinz

15

The Inversive Procedure


We interprete a burst as transfer function H (seen as pulse response)
and reproduce the delays T and weights W of the network behind:
function [T,W] = net(H,fs);
// returns T and W
j=1;
// W-index j
for i=1:length(H)
// H-index i
if H(i) == 0 then ;
// do nothing
else
// write the value to W, the index to T
W(j) = H(i);
// value to W
T(j) = i;
// index to T
j = j+1;
// increment j
end;
// endif
end;
// endfor
T = T ./ fs;
// multiply with sample duration
T = T - min(T);
// scale to min: reduced T-vector
endfunction;

heinz@gfai.de

www.gfai.de/~heinz

16

Example H = f(T,W)


Delays T, weights W, transfer function H, reducing vectors: index r
Delays:
Weights:

Reduced T, W:

T  [ 1 , 2 , 3 ]  [5, 3, 8]

W  [w1 , w2 , w3 ]  [1, 0.5, 1]
TR  [ R1 , R 2 , R3 ]  [0, 2, 5]
WR  [wR1 , wR 2 , wR3 ]  [.5, 1, 1]

Transfer function:

H  (w2 , 0, w1 , 0, 0, w3 )

H  0.5, 0, 1, 0, 0, 1

heinz@gfai.de

www.gfai.de/~heinz

17

Example
Key X and keyhole H
unipolar

max(FFT) at 0 Hz
(uni/uni)
heinz@gfai.de

www.gfai.de/~heinz

18

Conclusion









To characterize time- and frequency domain, we transform delays and
weights of a simplest interference network into a LTI transfer response
A procedure [H] = trans(T,W,fs) calculates the (time-discrete) transfer
function H (pulse response) of the net from delay vector T (delay mask)
and weight vector W
The FFT shows learning problems for unipolar signals and unipolar H
because of highest DC-value
A mixture between unipolar signals and bipolar transfer function (weights)
acts as good alternative (nerve nets)
Interpreting bursts as transfer functions (pulse responses), we design an
inverse procedure [T,W] = net(H,fs) that reconstructs the net structure
[T,W] from transfer function H
Find Scilab sources and the paper on the web
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv

heinz@gfai.de

www.gfai.de/~heinz

19

Relevance for ANN







The transfer function or pulse response H is responsible for all sequential
properties of a network: for code and sound generation or detection
The lecture shows, that smallest delays and delay differences change the
pulse response H of the network
Remembering the "Neural Networks" (NN, ANN) approach with layers
clocked by clock cycles we find, that the NN-approach destroyes the
sequential structure of each network complete
In no case ANN or NN are candidates to understand the function of nerve
like structures
Thinking about nerves we need interferential approches that does not
destroy the delay structure of the net.

heinz@gfai.de

www.gfai.de/~heinz

20

Und der Herr sprach: "So führte ich
euch auf den Weg der Erkenntnis.
Gehet nun, und traget die Botschaft in
die Welt hinaus!"

Vielen Dank für die
Aufmerksamkeit!

Erfolgreiche Google-Suchterme:
"Interferenznetze", "Mathematik des
Nervensystems", "Heinz",
"Akustische Kamera"
heinz@gfai.de

www.gfai.de/~heinz

Dr. G. Heinz, GFaI
Volmerstr.3
12489 Berlin
Tel. +49 (30) 814563-490
www.gfai.de/~heinz
heinz@gfai.de
21


Slide 10

www.gfai.de/~heinz

How Network Topology Defines its Behavior Serial Code Detection with Spiking Networks
Dr. Gerd Heinz

Gesellschaft zur Förderung
angewandter Informatik e.V
Berlin-Adlershof

Workshop „Autonomous Systems”
Herwig Unger & Wolfgang Halang
Hotel Sabina Playa, Cala Millor
Mallorca, 13-17 Oct. 2013

Sensor- und Motor- Homunculus.

Natural History Museum, London

Contents

www.gfai.de/~heinz












Abstract
Convolution
A Small Interference Network
Construction of Transfer Functions
Applying a Convolution
Spike Output
Frequency Analysis
Unipolar or Bipolar Signal Levels?
Interpreting Bursts
Examples

Abstract











Compared with technical sensors, sound and code analysis of nerve
system is fascinating
We differ between the whisper of the wind or the branding of waves,
we know the songs of birds, we hear dangerous noises of a defect car
engine, we feel, if an airplane starts
And we speak and understand languages: Do we have a chance, to
interprete the function of a nerve net on the level of net structure?
We try to analyze a simplest delaying network in nerve-like structure
Our net consists of delays T and weights W
Basing on Interference Network (IN) abstraction we transform the net
into a transfer function H of a linear time-invariant system (LTI-system)
We use convolution between input time-function and transfer function
to find the "behaviour" of the LTI-system
* The work bases on the book "Neuronale Interferenzen", Kap.8b, S.181,
download: www.gfai.de/~heinz/publications/NI/index.htm

heinz@gfai.de

www.gfai.de/~heinz

3

Convolution


"Faltung" (terminus created by Felix Bernstein, 1922):
t

y(t )  x(t ) * h(t )   x(t   ) h( ) d
0



Discrete form (Cauchy product):
n

yn   hk xnk
k 0



Example:
FIR-filter
as direct
implementation
of convolution,
form: Y = X * S

heinz@gfai.de

www.gfai.de/~heinz

4

A Small Interference Network


Form:

Our Abstraction:

1

x(t)

N'

y(t)

x(t)

n

heinz@gfai.de

w1 N'

w2

N

+

...

N

...

2

y(t)

wn

Delay vector:

T  [ 1 , 2 ,..., n ]

Weight vector:

W  [w1 , w2 ,...,wn ]

Transfer function:

1 n
y(t )   wi x(t   i )
n i

www.gfai.de/~heinz

5

Construction of Transfer Function H
(Transfer function of LTI-system)
Discrete transfer function H seen as discrete time function with sample
distance ts = 1/fs and with growing index i :

i = [… 2, 3, 4, 5, 6, 7, 8, 9, …]

fs = 1/ts

H = [… wi-1, wi, wi+1, wi+2, wi+3, wi+4, wi+5, wi+6, …]



Length of H is greater the delay difference:



Construction of the transfer function of the net by addition of weights:
H(j) = H(j) + W(i) mit j = T(i) :

length(H) ≥ max(T) – min(T)

H(T(i)) = H(T(i)) + W(i)
heinz@gfai.de

www.gfai.de/~heinz

6

Get Transfer Function with Scilab
function [H] = trans(T,W,fs);
if length(T) == length(W) then
T = T * fs;
// apply sample rate of H
T = round(T);
// T becomes index: integer
H = 1:max(T); H = H * 0;
// create an empty H
for i = 1:length(T),
// for all T(i), W(i)
j = T(i),
// delay becomes the H-index j
H(j) = H(j) + W(i),
// add the weight to H
end // for
else // if
printf('\n\nerror: T and W have different size\n');
end // if
endfunction;
H is the transfer function of a LTI-system!
heinz@gfai.de

www.gfai.de/~heinz

7

Applying a Convolution
What is the system answer Y for different input functions X ?
It is simple the convolution with H , the multiplication of time series

y(t) = h(t) * x(t)


Using vectors

Y=X*H


X

H

Y

Scilab form

Y = convol(H,X)


Fourier Analysis of H

F = abs(fft(H))

heinz@gfai.de

www.gfai.de/~heinz

8

Barker Codes and Spikes






Hebbian rule in neuro-science shows, that a neuron needs high
synchronous emissions to learn
We need spikes at the output of the neuron
Barker codes maximize spike-like output of long sequences in
RADAR technology:
Example:

H = [1, 1, 1, -1, 1]
X = rev(H)

(Barker code no. 5)

Y = convol(X,H) = [1, 0, 1, 0, 5, 0, 1, 0, 1]


But neurons don't have negative signal values!
What can we do?

heinz@gfai.de

www.gfai.de/~heinz

9

Spectral Analysis of Transfer Function H
j

F (e ) 



 H (n)e

 jn

n  




FFT of any unipolar transfer function shows the maximum for frequency
f = 0 Hz (DC)
It is not possible to learn with unipolar H ; codes are AC:

Highest level at 0 Hz

Unipolar
{0…1}

Bipolar
{-1…1}

heinz@gfai.de

www.gfai.de/~heinz

10

Unipolar or Bipolar Signal Levels?


Unipolar signals, unipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{-1…0…1}

11

Unipolar or Bipolar Signal Levels?


Bipolar signals, bipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{0…1}

12

Unipolar or Bipolar Signal Levels?


Unipolar signals, bipolar synapses (neuron)

heinz@gfai.de

www.gfai.de/~heinz

{0…1} {-1…1}

13

Unipolar or Bipolar Signal Levels?
unipolar signals and bipolar synapses (neuron)
X, Y:
uni {0…1}
H:
bi {-1…1}
Big surprize:
 Using unipolar signals X, Y and bipolar H, the system is not significant
worse compared to the best case uni/uni

Test it:
 Use relating Scilab sources under
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv
Conclusion
 Nerve systems do not need bipolar signals to detect code and sound, if
the synapses are bipolar (inhibiting or exciting)!
heinz@gfai.de

www.gfai.de/~heinz

14

Interpreting Bursts


Noisy groups of pulses are known at different locations in nerve system



Is it possible, to find the net structure behind them?

heinz@gfai.de

www.gfai.de/~heinz

15

The Inversive Procedure


We interprete a burst as transfer function H (seen as pulse response)
and reproduce the delays T and weights W of the network behind:
function [T,W] = net(H,fs);
// returns T and W
j=1;
// W-index j
for i=1:length(H)
// H-index i
if H(i) == 0 then ;
// do nothing
else
// write the value to W, the index to T
W(j) = H(i);
// value to W
T(j) = i;
// index to T
j = j+1;
// increment j
end;
// endif
end;
// endfor
T = T ./ fs;
// multiply with sample duration
T = T - min(T);
// scale to min: reduced T-vector
endfunction;

heinz@gfai.de

www.gfai.de/~heinz

16

Example H = f(T,W)


Delays T, weights W, transfer function H, reducing vectors: index r
Delays:
Weights:

Reduced T, W:

T  [ 1 , 2 , 3 ]  [5, 3, 8]

W  [w1 , w2 , w3 ]  [1, 0.5, 1]
TR  [ R1 , R 2 , R3 ]  [0, 2, 5]
WR  [wR1 , wR 2 , wR3 ]  [.5, 1, 1]

Transfer function:

H  (w2 , 0, w1 , 0, 0, w3 )

H  0.5, 0, 1, 0, 0, 1

heinz@gfai.de

www.gfai.de/~heinz

17

Example
Key X and keyhole H
unipolar

max(FFT) at 0 Hz
(uni/uni)
heinz@gfai.de

www.gfai.de/~heinz

18

Conclusion









To characterize time- and frequency domain, we transform delays and
weights of a simplest interference network into a LTI transfer response
A procedure [H] = trans(T,W,fs) calculates the (time-discrete) transfer
function H (pulse response) of the net from delay vector T (delay mask)
and weight vector W
The FFT shows learning problems for unipolar signals and unipolar H
because of highest DC-value
A mixture between unipolar signals and bipolar transfer function (weights)
acts as good alternative (nerve nets)
Interpreting bursts as transfer functions (pulse responses), we design an
inverse procedure [T,W] = net(H,fs) that reconstructs the net structure
[T,W] from transfer function H
Find Scilab sources and the paper on the web
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv

heinz@gfai.de

www.gfai.de/~heinz

19

Relevance for ANN







The transfer function or pulse response H is responsible for all sequential
properties of a network: for code and sound generation or detection
The lecture shows, that smallest delays and delay differences change the
pulse response H of the network
Remembering the "Neural Networks" (NN, ANN) approach with layers
clocked by clock cycles we find, that the NN-approach destroyes the
sequential structure of each network complete
In no case ANN or NN are candidates to understand the function of nerve
like structures
Thinking about nerves we need interferential approches that does not
destroy the delay structure of the net.

heinz@gfai.de

www.gfai.de/~heinz

20

Und der Herr sprach: "So führte ich
euch auf den Weg der Erkenntnis.
Gehet nun, und traget die Botschaft in
die Welt hinaus!"

Vielen Dank für die
Aufmerksamkeit!

Erfolgreiche Google-Suchterme:
"Interferenznetze", "Mathematik des
Nervensystems", "Heinz",
"Akustische Kamera"
heinz@gfai.de

www.gfai.de/~heinz

Dr. G. Heinz, GFaI
Volmerstr.3
12489 Berlin
Tel. +49 (30) 814563-490
www.gfai.de/~heinz
heinz@gfai.de
21


Slide 11

www.gfai.de/~heinz

How Network Topology Defines its Behavior Serial Code Detection with Spiking Networks
Dr. Gerd Heinz

Gesellschaft zur Förderung
angewandter Informatik e.V
Berlin-Adlershof

Workshop „Autonomous Systems”
Herwig Unger & Wolfgang Halang
Hotel Sabina Playa, Cala Millor
Mallorca, 13-17 Oct. 2013

Sensor- und Motor- Homunculus.

Natural History Museum, London

Contents

www.gfai.de/~heinz












Abstract
Convolution
A Small Interference Network
Construction of Transfer Functions
Applying a Convolution
Spike Output
Frequency Analysis
Unipolar or Bipolar Signal Levels?
Interpreting Bursts
Examples

Abstract











Compared with technical sensors, sound and code analysis of nerve
system is fascinating
We differ between the whisper of the wind or the branding of waves,
we know the songs of birds, we hear dangerous noises of a defect car
engine, we feel, if an airplane starts
And we speak and understand languages: Do we have a chance, to
interprete the function of a nerve net on the level of net structure?
We try to analyze a simplest delaying network in nerve-like structure
Our net consists of delays T and weights W
Basing on Interference Network (IN) abstraction we transform the net
into a transfer function H of a linear time-invariant system (LTI-system)
We use convolution between input time-function and transfer function
to find the "behaviour" of the LTI-system
* The work bases on the book "Neuronale Interferenzen", Kap.8b, S.181,
download: www.gfai.de/~heinz/publications/NI/index.htm

heinz@gfai.de

www.gfai.de/~heinz

3

Convolution


"Faltung" (terminus created by Felix Bernstein, 1922):
t

y(t )  x(t ) * h(t )   x(t   ) h( ) d
0



Discrete form (Cauchy product):
n

yn   hk xnk
k 0



Example:
FIR-filter
as direct
implementation
of convolution,
form: Y = X * S

heinz@gfai.de

www.gfai.de/~heinz

4

A Small Interference Network


Form:

Our Abstraction:

1

x(t)

N'

y(t)

x(t)

n

heinz@gfai.de

w1 N'

w2

N

+

...

N

...

2

y(t)

wn

Delay vector:

T  [ 1 , 2 ,..., n ]

Weight vector:

W  [w1 , w2 ,...,wn ]

Transfer function:

1 n
y(t )   wi x(t   i )
n i

www.gfai.de/~heinz

5

Construction of Transfer Function H
(Transfer function of LTI-system)
Discrete transfer function H seen as discrete time function with sample
distance ts = 1/fs and with growing index i :

i = [… 2, 3, 4, 5, 6, 7, 8, 9, …]

fs = 1/ts

H = [… wi-1, wi, wi+1, wi+2, wi+3, wi+4, wi+5, wi+6, …]



Length of H is greater the delay difference:



Construction of the transfer function of the net by addition of weights:
H(j) = H(j) + W(i) mit j = T(i) :

length(H) ≥ max(T) – min(T)

H(T(i)) = H(T(i)) + W(i)
heinz@gfai.de

www.gfai.de/~heinz

6

Get Transfer Function with Scilab
function [H] = trans(T,W,fs);
if length(T) == length(W) then
T = T * fs;
// apply sample rate of H
T = round(T);
// T becomes index: integer
H = 1:max(T); H = H * 0;
// create an empty H
for i = 1:length(T),
// for all T(i), W(i)
j = T(i),
// delay becomes the H-index j
H(j) = H(j) + W(i),
// add the weight to H
end // for
else // if
printf('\n\nerror: T and W have different size\n');
end // if
endfunction;
H is the transfer function of a LTI-system!
heinz@gfai.de

www.gfai.de/~heinz

7

Applying a Convolution
What is the system answer Y for different input functions X ?
It is simple the convolution with H , the multiplication of time series

y(t) = h(t) * x(t)


Using vectors

Y=X*H


X

H

Y

Scilab form

Y = convol(H,X)


Fourier Analysis of H

F = abs(fft(H))

heinz@gfai.de

www.gfai.de/~heinz

8

Barker Codes and Spikes






Hebbian rule in neuro-science shows, that a neuron needs high
synchronous emissions to learn
We need spikes at the output of the neuron
Barker codes maximize spike-like output of long sequences in
RADAR technology:
Example:

H = [1, 1, 1, -1, 1]
X = rev(H)

(Barker code no. 5)

Y = convol(X,H) = [1, 0, 1, 0, 5, 0, 1, 0, 1]


But neurons don't have negative signal values!
What can we do?

heinz@gfai.de

www.gfai.de/~heinz

9

Spectral Analysis of Transfer Function H
j

F (e ) 



 H (n)e

 jn

n  




FFT of any unipolar transfer function shows the maximum for frequency
f = 0 Hz (DC)
It is not possible to learn with unipolar H ; codes are AC:

Highest level at 0 Hz

Unipolar
{0…1}

Bipolar
{-1…1}

heinz@gfai.de

www.gfai.de/~heinz

10

Unipolar or Bipolar Signal Levels?


Unipolar signals, unipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{-1…0…1}

11

Unipolar or Bipolar Signal Levels?


Bipolar signals, bipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{0…1}

12

Unipolar or Bipolar Signal Levels?


Unipolar signals, bipolar synapses (neuron)

heinz@gfai.de

www.gfai.de/~heinz

{0…1} {-1…1}

13

Unipolar or Bipolar Signal Levels?
unipolar signals and bipolar synapses (neuron)
X, Y:
uni {0…1}
H:
bi {-1…1}
Big surprize:
 Using unipolar signals X, Y and bipolar H, the system is not significant
worse compared to the best case uni/uni

Test it:
 Use relating Scilab sources under
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv
Conclusion
 Nerve systems do not need bipolar signals to detect code and sound, if
the synapses are bipolar (inhibiting or exciting)!
heinz@gfai.de

www.gfai.de/~heinz

14

Interpreting Bursts


Noisy groups of pulses are known at different locations in nerve system



Is it possible, to find the net structure behind them?

heinz@gfai.de

www.gfai.de/~heinz

15

The Inversive Procedure


We interprete a burst as transfer function H (seen as pulse response)
and reproduce the delays T and weights W of the network behind:
function [T,W] = net(H,fs);
// returns T and W
j=1;
// W-index j
for i=1:length(H)
// H-index i
if H(i) == 0 then ;
// do nothing
else
// write the value to W, the index to T
W(j) = H(i);
// value to W
T(j) = i;
// index to T
j = j+1;
// increment j
end;
// endif
end;
// endfor
T = T ./ fs;
// multiply with sample duration
T = T - min(T);
// scale to min: reduced T-vector
endfunction;

heinz@gfai.de

www.gfai.de/~heinz

16

Example H = f(T,W)


Delays T, weights W, transfer function H, reducing vectors: index r
Delays:
Weights:

Reduced T, W:

T  [ 1 , 2 , 3 ]  [5, 3, 8]

W  [w1 , w2 , w3 ]  [1, 0.5, 1]
TR  [ R1 , R 2 , R3 ]  [0, 2, 5]
WR  [wR1 , wR 2 , wR3 ]  [.5, 1, 1]

Transfer function:

H  (w2 , 0, w1 , 0, 0, w3 )

H  0.5, 0, 1, 0, 0, 1

heinz@gfai.de

www.gfai.de/~heinz

17

Example
Key X and keyhole H
unipolar

max(FFT) at 0 Hz
(uni/uni)
heinz@gfai.de

www.gfai.de/~heinz

18

Conclusion









To characterize time- and frequency domain, we transform delays and
weights of a simplest interference network into a LTI transfer response
A procedure [H] = trans(T,W,fs) calculates the (time-discrete) transfer
function H (pulse response) of the net from delay vector T (delay mask)
and weight vector W
The FFT shows learning problems for unipolar signals and unipolar H
because of highest DC-value
A mixture between unipolar signals and bipolar transfer function (weights)
acts as good alternative (nerve nets)
Interpreting bursts as transfer functions (pulse responses), we design an
inverse procedure [T,W] = net(H,fs) that reconstructs the net structure
[T,W] from transfer function H
Find Scilab sources and the paper on the web
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv

heinz@gfai.de

www.gfai.de/~heinz

19

Relevance for ANN







The transfer function or pulse response H is responsible for all sequential
properties of a network: for code and sound generation or detection
The lecture shows, that smallest delays and delay differences change the
pulse response H of the network
Remembering the "Neural Networks" (NN, ANN) approach with layers
clocked by clock cycles we find, that the NN-approach destroyes the
sequential structure of each network complete
In no case ANN or NN are candidates to understand the function of nerve
like structures
Thinking about nerves we need interferential approches that does not
destroy the delay structure of the net.

heinz@gfai.de

www.gfai.de/~heinz

20

Und der Herr sprach: "So führte ich
euch auf den Weg der Erkenntnis.
Gehet nun, und traget die Botschaft in
die Welt hinaus!"

Vielen Dank für die
Aufmerksamkeit!

Erfolgreiche Google-Suchterme:
"Interferenznetze", "Mathematik des
Nervensystems", "Heinz",
"Akustische Kamera"
heinz@gfai.de

www.gfai.de/~heinz

Dr. G. Heinz, GFaI
Volmerstr.3
12489 Berlin
Tel. +49 (30) 814563-490
www.gfai.de/~heinz
heinz@gfai.de
21


Slide 12

www.gfai.de/~heinz

How Network Topology Defines its Behavior Serial Code Detection with Spiking Networks
Dr. Gerd Heinz

Gesellschaft zur Förderung
angewandter Informatik e.V
Berlin-Adlershof

Workshop „Autonomous Systems”
Herwig Unger & Wolfgang Halang
Hotel Sabina Playa, Cala Millor
Mallorca, 13-17 Oct. 2013

Sensor- und Motor- Homunculus.

Natural History Museum, London

Contents

www.gfai.de/~heinz












Abstract
Convolution
A Small Interference Network
Construction of Transfer Functions
Applying a Convolution
Spike Output
Frequency Analysis
Unipolar or Bipolar Signal Levels?
Interpreting Bursts
Examples

Abstract











Compared with technical sensors, sound and code analysis of nerve
system is fascinating
We differ between the whisper of the wind or the branding of waves,
we know the songs of birds, we hear dangerous noises of a defect car
engine, we feel, if an airplane starts
And we speak and understand languages: Do we have a chance, to
interprete the function of a nerve net on the level of net structure?
We try to analyze a simplest delaying network in nerve-like structure
Our net consists of delays T and weights W
Basing on Interference Network (IN) abstraction we transform the net
into a transfer function H of a linear time-invariant system (LTI-system)
We use convolution between input time-function and transfer function
to find the "behaviour" of the LTI-system
* The work bases on the book "Neuronale Interferenzen", Kap.8b, S.181,
download: www.gfai.de/~heinz/publications/NI/index.htm

heinz@gfai.de

www.gfai.de/~heinz

3

Convolution


"Faltung" (terminus created by Felix Bernstein, 1922):
t

y(t )  x(t ) * h(t )   x(t   ) h( ) d
0



Discrete form (Cauchy product):
n

yn   hk xnk
k 0



Example:
FIR-filter
as direct
implementation
of convolution,
form: Y = X * S

heinz@gfai.de

www.gfai.de/~heinz

4

A Small Interference Network


Form:

Our Abstraction:

1

x(t)

N'

y(t)

x(t)

n

heinz@gfai.de

w1 N'

w2

N

+

...

N

...

2

y(t)

wn

Delay vector:

T  [ 1 , 2 ,..., n ]

Weight vector:

W  [w1 , w2 ,...,wn ]

Transfer function:

1 n
y(t )   wi x(t   i )
n i

www.gfai.de/~heinz

5

Construction of Transfer Function H
(Transfer function of LTI-system)
Discrete transfer function H seen as discrete time function with sample
distance ts = 1/fs and with growing index i :

i = [… 2, 3, 4, 5, 6, 7, 8, 9, …]

fs = 1/ts

H = [… wi-1, wi, wi+1, wi+2, wi+3, wi+4, wi+5, wi+6, …]



Length of H is greater the delay difference:



Construction of the transfer function of the net by addition of weights:
H(j) = H(j) + W(i) mit j = T(i) :

length(H) ≥ max(T) – min(T)

H(T(i)) = H(T(i)) + W(i)
heinz@gfai.de

www.gfai.de/~heinz

6

Get Transfer Function with Scilab
function [H] = trans(T,W,fs);
if length(T) == length(W) then
T = T * fs;
// apply sample rate of H
T = round(T);
// T becomes index: integer
H = 1:max(T); H = H * 0;
// create an empty H
for i = 1:length(T),
// for all T(i), W(i)
j = T(i),
// delay becomes the H-index j
H(j) = H(j) + W(i),
// add the weight to H
end // for
else // if
printf('\n\nerror: T and W have different size\n');
end // if
endfunction;
H is the transfer function of a LTI-system!
heinz@gfai.de

www.gfai.de/~heinz

7

Applying a Convolution
What is the system answer Y for different input functions X ?
It is simple the convolution with H , the multiplication of time series

y(t) = h(t) * x(t)


Using vectors

Y=X*H


X

H

Y

Scilab form

Y = convol(H,X)


Fourier Analysis of H

F = abs(fft(H))

heinz@gfai.de

www.gfai.de/~heinz

8

Barker Codes and Spikes






Hebbian rule in neuro-science shows, that a neuron needs high
synchronous emissions to learn
We need spikes at the output of the neuron
Barker codes maximize spike-like output of long sequences in
RADAR technology:
Example:

H = [1, 1, 1, -1, 1]
X = rev(H)

(Barker code no. 5)

Y = convol(X,H) = [1, 0, 1, 0, 5, 0, 1, 0, 1]


But neurons don't have negative signal values!
What can we do?

heinz@gfai.de

www.gfai.de/~heinz

9

Spectral Analysis of Transfer Function H
j

F (e ) 



 H (n)e

 jn

n  




FFT of any unipolar transfer function shows the maximum for frequency
f = 0 Hz (DC)
It is not possible to learn with unipolar H ; codes are AC:

Highest level at 0 Hz

Unipolar
{0…1}

Bipolar
{-1…1}

heinz@gfai.de

www.gfai.de/~heinz

10

Unipolar or Bipolar Signal Levels?


Unipolar signals, unipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{-1…0…1}

11

Unipolar or Bipolar Signal Levels?


Bipolar signals, bipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{0…1}

12

Unipolar or Bipolar Signal Levels?


Unipolar signals, bipolar synapses (neuron)

heinz@gfai.de

www.gfai.de/~heinz

{0…1} {-1…1}

13

Unipolar or Bipolar Signal Levels?
unipolar signals and bipolar synapses (neuron)
X, Y:
uni {0…1}
H:
bi {-1…1}
Big surprize:
 Using unipolar signals X, Y and bipolar H, the system is not significant
worse compared to the best case uni/uni

Test it:
 Use relating Scilab sources under
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv
Conclusion
 Nerve systems do not need bipolar signals to detect code and sound, if
the synapses are bipolar (inhibiting or exciting)!
heinz@gfai.de

www.gfai.de/~heinz

14

Interpreting Bursts


Noisy groups of pulses are known at different locations in nerve system



Is it possible, to find the net structure behind them?

heinz@gfai.de

www.gfai.de/~heinz

15

The Inversive Procedure


We interprete a burst as transfer function H (seen as pulse response)
and reproduce the delays T and weights W of the network behind:
function [T,W] = net(H,fs);
// returns T and W
j=1;
// W-index j
for i=1:length(H)
// H-index i
if H(i) == 0 then ;
// do nothing
else
// write the value to W, the index to T
W(j) = H(i);
// value to W
T(j) = i;
// index to T
j = j+1;
// increment j
end;
// endif
end;
// endfor
T = T ./ fs;
// multiply with sample duration
T = T - min(T);
// scale to min: reduced T-vector
endfunction;

heinz@gfai.de

www.gfai.de/~heinz

16

Example H = f(T,W)


Delays T, weights W, transfer function H, reducing vectors: index r
Delays:
Weights:

Reduced T, W:

T  [ 1 , 2 , 3 ]  [5, 3, 8]

W  [w1 , w2 , w3 ]  [1, 0.5, 1]
TR  [ R1 , R 2 , R3 ]  [0, 2, 5]
WR  [wR1 , wR 2 , wR3 ]  [.5, 1, 1]

Transfer function:

H  (w2 , 0, w1 , 0, 0, w3 )

H  0.5, 0, 1, 0, 0, 1

heinz@gfai.de

www.gfai.de/~heinz

17

Example
Key X and keyhole H
unipolar

max(FFT) at 0 Hz
(uni/uni)
heinz@gfai.de

www.gfai.de/~heinz

18

Conclusion









To characterize time- and frequency domain, we transform delays and
weights of a simplest interference network into a LTI transfer response
A procedure [H] = trans(T,W,fs) calculates the (time-discrete) transfer
function H (pulse response) of the net from delay vector T (delay mask)
and weight vector W
The FFT shows learning problems for unipolar signals and unipolar H
because of highest DC-value
A mixture between unipolar signals and bipolar transfer function (weights)
acts as good alternative (nerve nets)
Interpreting bursts as transfer functions (pulse responses), we design an
inverse procedure [T,W] = net(H,fs) that reconstructs the net structure
[T,W] from transfer function H
Find Scilab sources and the paper on the web
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv

heinz@gfai.de

www.gfai.de/~heinz

19

Relevance for ANN







The transfer function or pulse response H is responsible for all sequential
properties of a network: for code and sound generation or detection
The lecture shows, that smallest delays and delay differences change the
pulse response H of the network
Remembering the "Neural Networks" (NN, ANN) approach with layers
clocked by clock cycles we find, that the NN-approach destroyes the
sequential structure of each network complete
In no case ANN or NN are candidates to understand the function of nerve
like structures
Thinking about nerves we need interferential approches that does not
destroy the delay structure of the net.

heinz@gfai.de

www.gfai.de/~heinz

20

Und der Herr sprach: "So führte ich
euch auf den Weg der Erkenntnis.
Gehet nun, und traget die Botschaft in
die Welt hinaus!"

Vielen Dank für die
Aufmerksamkeit!

Erfolgreiche Google-Suchterme:
"Interferenznetze", "Mathematik des
Nervensystems", "Heinz",
"Akustische Kamera"
heinz@gfai.de

www.gfai.de/~heinz

Dr. G. Heinz, GFaI
Volmerstr.3
12489 Berlin
Tel. +49 (30) 814563-490
www.gfai.de/~heinz
heinz@gfai.de
21


Slide 13

www.gfai.de/~heinz

How Network Topology Defines its Behavior Serial Code Detection with Spiking Networks
Dr. Gerd Heinz

Gesellschaft zur Förderung
angewandter Informatik e.V
Berlin-Adlershof

Workshop „Autonomous Systems”
Herwig Unger & Wolfgang Halang
Hotel Sabina Playa, Cala Millor
Mallorca, 13-17 Oct. 2013

Sensor- und Motor- Homunculus.

Natural History Museum, London

Contents

www.gfai.de/~heinz












Abstract
Convolution
A Small Interference Network
Construction of Transfer Functions
Applying a Convolution
Spike Output
Frequency Analysis
Unipolar or Bipolar Signal Levels?
Interpreting Bursts
Examples

Abstract











Compared with technical sensors, sound and code analysis of nerve
system is fascinating
We differ between the whisper of the wind or the branding of waves,
we know the songs of birds, we hear dangerous noises of a defect car
engine, we feel, if an airplane starts
And we speak and understand languages: Do we have a chance, to
interprete the function of a nerve net on the level of net structure?
We try to analyze a simplest delaying network in nerve-like structure
Our net consists of delays T and weights W
Basing on Interference Network (IN) abstraction we transform the net
into a transfer function H of a linear time-invariant system (LTI-system)
We use convolution between input time-function and transfer function
to find the "behaviour" of the LTI-system
* The work bases on the book "Neuronale Interferenzen", Kap.8b, S.181,
download: www.gfai.de/~heinz/publications/NI/index.htm

heinz@gfai.de

www.gfai.de/~heinz

3

Convolution


"Faltung" (terminus created by Felix Bernstein, 1922):
t

y(t )  x(t ) * h(t )   x(t   ) h( ) d
0



Discrete form (Cauchy product):
n

yn   hk xnk
k 0



Example:
FIR-filter
as direct
implementation
of convolution,
form: Y = X * S

heinz@gfai.de

www.gfai.de/~heinz

4

A Small Interference Network


Form:

Our Abstraction:

1

x(t)

N'

y(t)

x(t)

n

heinz@gfai.de

w1 N'

w2

N

+

...

N

...

2

y(t)

wn

Delay vector:

T  [ 1 , 2 ,..., n ]

Weight vector:

W  [w1 , w2 ,...,wn ]

Transfer function:

1 n
y(t )   wi x(t   i )
n i

www.gfai.de/~heinz

5

Construction of Transfer Function H
(Transfer function of LTI-system)
Discrete transfer function H seen as discrete time function with sample
distance ts = 1/fs and with growing index i :

i = [… 2, 3, 4, 5, 6, 7, 8, 9, …]

fs = 1/ts

H = [… wi-1, wi, wi+1, wi+2, wi+3, wi+4, wi+5, wi+6, …]



Length of H is greater the delay difference:



Construction of the transfer function of the net by addition of weights:
H(j) = H(j) + W(i) mit j = T(i) :

length(H) ≥ max(T) – min(T)

H(T(i)) = H(T(i)) + W(i)
heinz@gfai.de

www.gfai.de/~heinz

6

Get Transfer Function with Scilab
function [H] = trans(T,W,fs);
if length(T) == length(W) then
T = T * fs;
// apply sample rate of H
T = round(T);
// T becomes index: integer
H = 1:max(T); H = H * 0;
// create an empty H
for i = 1:length(T),
// for all T(i), W(i)
j = T(i),
// delay becomes the H-index j
H(j) = H(j) + W(i),
// add the weight to H
end // for
else // if
printf('\n\nerror: T and W have different size\n');
end // if
endfunction;
H is the transfer function of a LTI-system!
heinz@gfai.de

www.gfai.de/~heinz

7

Applying a Convolution
What is the system answer Y for different input functions X ?
It is simple the convolution with H , the multiplication of time series

y(t) = h(t) * x(t)


Using vectors

Y=X*H


X

H

Y

Scilab form

Y = convol(H,X)


Fourier Analysis of H

F = abs(fft(H))

heinz@gfai.de

www.gfai.de/~heinz

8

Barker Codes and Spikes






Hebbian rule in neuro-science shows, that a neuron needs high
synchronous emissions to learn
We need spikes at the output of the neuron
Barker codes maximize spike-like output of long sequences in
RADAR technology:
Example:

H = [1, 1, 1, -1, 1]
X = rev(H)

(Barker code no. 5)

Y = convol(X,H) = [1, 0, 1, 0, 5, 0, 1, 0, 1]


But neurons don't have negative signal values!
What can we do?

heinz@gfai.de

www.gfai.de/~heinz

9

Spectral Analysis of Transfer Function H
j

F (e ) 



 H (n)e

 jn

n  




FFT of any unipolar transfer function shows the maximum for frequency
f = 0 Hz (DC)
It is not possible to learn with unipolar H ; codes are AC:

Highest level at 0 Hz

Unipolar
{0…1}

Bipolar
{-1…1}

heinz@gfai.de

www.gfai.de/~heinz

10

Unipolar or Bipolar Signal Levels?


Unipolar signals, unipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{-1…0…1}

11

Unipolar or Bipolar Signal Levels?


Bipolar signals, bipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{0…1}

12

Unipolar or Bipolar Signal Levels?


Unipolar signals, bipolar synapses (neuron)

heinz@gfai.de

www.gfai.de/~heinz

{0…1} {-1…1}

13

Unipolar or Bipolar Signal Levels?
unipolar signals and bipolar synapses (neuron)
X, Y:
uni {0…1}
H:
bi {-1…1}
Big surprize:
 Using unipolar signals X, Y and bipolar H, the system is not significant
worse compared to the best case uni/uni

Test it:
 Use relating Scilab sources under
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv
Conclusion
 Nerve systems do not need bipolar signals to detect code and sound, if
the synapses are bipolar (inhibiting or exciting)!
heinz@gfai.de

www.gfai.de/~heinz

14

Interpreting Bursts


Noisy groups of pulses are known at different locations in nerve system



Is it possible, to find the net structure behind them?

heinz@gfai.de

www.gfai.de/~heinz

15

The Inversive Procedure


We interprete a burst as transfer function H (seen as pulse response)
and reproduce the delays T and weights W of the network behind:
function [T,W] = net(H,fs);
// returns T and W
j=1;
// W-index j
for i=1:length(H)
// H-index i
if H(i) == 0 then ;
// do nothing
else
// write the value to W, the index to T
W(j) = H(i);
// value to W
T(j) = i;
// index to T
j = j+1;
// increment j
end;
// endif
end;
// endfor
T = T ./ fs;
// multiply with sample duration
T = T - min(T);
// scale to min: reduced T-vector
endfunction;

heinz@gfai.de

www.gfai.de/~heinz

16

Example H = f(T,W)


Delays T, weights W, transfer function H, reducing vectors: index r
Delays:
Weights:

Reduced T, W:

T  [ 1 , 2 , 3 ]  [5, 3, 8]

W  [w1 , w2 , w3 ]  [1, 0.5, 1]
TR  [ R1 , R 2 , R3 ]  [0, 2, 5]
WR  [wR1 , wR 2 , wR3 ]  [.5, 1, 1]

Transfer function:

H  (w2 , 0, w1 , 0, 0, w3 )

H  0.5, 0, 1, 0, 0, 1

heinz@gfai.de

www.gfai.de/~heinz

17

Example
Key X and keyhole H
unipolar

max(FFT) at 0 Hz
(uni/uni)
heinz@gfai.de

www.gfai.de/~heinz

18

Conclusion









To characterize time- and frequency domain, we transform delays and
weights of a simplest interference network into a LTI transfer response
A procedure [H] = trans(T,W,fs) calculates the (time-discrete) transfer
function H (pulse response) of the net from delay vector T (delay mask)
and weight vector W
The FFT shows learning problems for unipolar signals and unipolar H
because of highest DC-value
A mixture between unipolar signals and bipolar transfer function (weights)
acts as good alternative (nerve nets)
Interpreting bursts as transfer functions (pulse responses), we design an
inverse procedure [T,W] = net(H,fs) that reconstructs the net structure
[T,W] from transfer function H
Find Scilab sources and the paper on the web
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv

heinz@gfai.de

www.gfai.de/~heinz

19

Relevance for ANN







The transfer function or pulse response H is responsible for all sequential
properties of a network: for code and sound generation or detection
The lecture shows, that smallest delays and delay differences change the
pulse response H of the network
Remembering the "Neural Networks" (NN, ANN) approach with layers
clocked by clock cycles we find, that the NN-approach destroyes the
sequential structure of each network complete
In no case ANN or NN are candidates to understand the function of nerve
like structures
Thinking about nerves we need interferential approches that does not
destroy the delay structure of the net.

heinz@gfai.de

www.gfai.de/~heinz

20

Und der Herr sprach: "So führte ich
euch auf den Weg der Erkenntnis.
Gehet nun, und traget die Botschaft in
die Welt hinaus!"

Vielen Dank für die
Aufmerksamkeit!

Erfolgreiche Google-Suchterme:
"Interferenznetze", "Mathematik des
Nervensystems", "Heinz",
"Akustische Kamera"
heinz@gfai.de

www.gfai.de/~heinz

Dr. G. Heinz, GFaI
Volmerstr.3
12489 Berlin
Tel. +49 (30) 814563-490
www.gfai.de/~heinz
heinz@gfai.de
21


Slide 14

www.gfai.de/~heinz

How Network Topology Defines its Behavior Serial Code Detection with Spiking Networks
Dr. Gerd Heinz

Gesellschaft zur Förderung
angewandter Informatik e.V
Berlin-Adlershof

Workshop „Autonomous Systems”
Herwig Unger & Wolfgang Halang
Hotel Sabina Playa, Cala Millor
Mallorca, 13-17 Oct. 2013

Sensor- und Motor- Homunculus.

Natural History Museum, London

Contents

www.gfai.de/~heinz












Abstract
Convolution
A Small Interference Network
Construction of Transfer Functions
Applying a Convolution
Spike Output
Frequency Analysis
Unipolar or Bipolar Signal Levels?
Interpreting Bursts
Examples

Abstract











Compared with technical sensors, sound and code analysis of nerve
system is fascinating
We differ between the whisper of the wind or the branding of waves,
we know the songs of birds, we hear dangerous noises of a defect car
engine, we feel, if an airplane starts
And we speak and understand languages: Do we have a chance, to
interprete the function of a nerve net on the level of net structure?
We try to analyze a simplest delaying network in nerve-like structure
Our net consists of delays T and weights W
Basing on Interference Network (IN) abstraction we transform the net
into a transfer function H of a linear time-invariant system (LTI-system)
We use convolution between input time-function and transfer function
to find the "behaviour" of the LTI-system
* The work bases on the book "Neuronale Interferenzen", Kap.8b, S.181,
download: www.gfai.de/~heinz/publications/NI/index.htm

heinz@gfai.de

www.gfai.de/~heinz

3

Convolution


"Faltung" (terminus created by Felix Bernstein, 1922):
t

y(t )  x(t ) * h(t )   x(t   ) h( ) d
0



Discrete form (Cauchy product):
n

yn   hk xnk
k 0



Example:
FIR-filter
as direct
implementation
of convolution,
form: Y = X * S

heinz@gfai.de

www.gfai.de/~heinz

4

A Small Interference Network


Form:

Our Abstraction:

1

x(t)

N'

y(t)

x(t)

n

heinz@gfai.de

w1 N'

w2

N

+

...

N

...

2

y(t)

wn

Delay vector:

T  [ 1 , 2 ,..., n ]

Weight vector:

W  [w1 , w2 ,...,wn ]

Transfer function:

1 n
y(t )   wi x(t   i )
n i

www.gfai.de/~heinz

5

Construction of Transfer Function H
(Transfer function of LTI-system)
Discrete transfer function H seen as discrete time function with sample
distance ts = 1/fs and with growing index i :

i = [… 2, 3, 4, 5, 6, 7, 8, 9, …]

fs = 1/ts

H = [… wi-1, wi, wi+1, wi+2, wi+3, wi+4, wi+5, wi+6, …]



Length of H is greater the delay difference:



Construction of the transfer function of the net by addition of weights:
H(j) = H(j) + W(i) mit j = T(i) :

length(H) ≥ max(T) – min(T)

H(T(i)) = H(T(i)) + W(i)
heinz@gfai.de

www.gfai.de/~heinz

6

Get Transfer Function with Scilab
function [H] = trans(T,W,fs);
if length(T) == length(W) then
T = T * fs;
// apply sample rate of H
T = round(T);
// T becomes index: integer
H = 1:max(T); H = H * 0;
// create an empty H
for i = 1:length(T),
// for all T(i), W(i)
j = T(i),
// delay becomes the H-index j
H(j) = H(j) + W(i),
// add the weight to H
end // for
else // if
printf('\n\nerror: T and W have different size\n');
end // if
endfunction;
H is the transfer function of a LTI-system!
heinz@gfai.de

www.gfai.de/~heinz

7

Applying a Convolution
What is the system answer Y for different input functions X ?
It is simple the convolution with H , the multiplication of time series

y(t) = h(t) * x(t)


Using vectors

Y=X*H


X

H

Y

Scilab form

Y = convol(H,X)


Fourier Analysis of H

F = abs(fft(H))

heinz@gfai.de

www.gfai.de/~heinz

8

Barker Codes and Spikes






Hebbian rule in neuro-science shows, that a neuron needs high
synchronous emissions to learn
We need spikes at the output of the neuron
Barker codes maximize spike-like output of long sequences in
RADAR technology:
Example:

H = [1, 1, 1, -1, 1]
X = rev(H)

(Barker code no. 5)

Y = convol(X,H) = [1, 0, 1, 0, 5, 0, 1, 0, 1]


But neurons don't have negative signal values!
What can we do?

heinz@gfai.de

www.gfai.de/~heinz

9

Spectral Analysis of Transfer Function H
j

F (e ) 



 H (n)e

 jn

n  




FFT of any unipolar transfer function shows the maximum for frequency
f = 0 Hz (DC)
It is not possible to learn with unipolar H ; codes are AC:

Highest level at 0 Hz

Unipolar
{0…1}

Bipolar
{-1…1}

heinz@gfai.de

www.gfai.de/~heinz

10

Unipolar or Bipolar Signal Levels?


Unipolar signals, unipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{-1…0…1}

11

Unipolar or Bipolar Signal Levels?


Bipolar signals, bipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{0…1}

12

Unipolar or Bipolar Signal Levels?


Unipolar signals, bipolar synapses (neuron)

heinz@gfai.de

www.gfai.de/~heinz

{0…1} {-1…1}

13

Unipolar or Bipolar Signal Levels?
unipolar signals and bipolar synapses (neuron)
X, Y:
uni {0…1}
H:
bi {-1…1}
Big surprize:
 Using unipolar signals X, Y and bipolar H, the system is not significant
worse compared to the best case uni/uni

Test it:
 Use relating Scilab sources under
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv
Conclusion
 Nerve systems do not need bipolar signals to detect code and sound, if
the synapses are bipolar (inhibiting or exciting)!
heinz@gfai.de

www.gfai.de/~heinz

14

Interpreting Bursts


Noisy groups of pulses are known at different locations in nerve system



Is it possible, to find the net structure behind them?

heinz@gfai.de

www.gfai.de/~heinz

15

The Inversive Procedure


We interprete a burst as transfer function H (seen as pulse response)
and reproduce the delays T and weights W of the network behind:
function [T,W] = net(H,fs);
// returns T and W
j=1;
// W-index j
for i=1:length(H)
// H-index i
if H(i) == 0 then ;
// do nothing
else
// write the value to W, the index to T
W(j) = H(i);
// value to W
T(j) = i;
// index to T
j = j+1;
// increment j
end;
// endif
end;
// endfor
T = T ./ fs;
// multiply with sample duration
T = T - min(T);
// scale to min: reduced T-vector
endfunction;

heinz@gfai.de

www.gfai.de/~heinz

16

Example H = f(T,W)


Delays T, weights W, transfer function H, reducing vectors: index r
Delays:
Weights:

Reduced T, W:

T  [ 1 , 2 , 3 ]  [5, 3, 8]

W  [w1 , w2 , w3 ]  [1, 0.5, 1]
TR  [ R1 , R 2 , R3 ]  [0, 2, 5]
WR  [wR1 , wR 2 , wR3 ]  [.5, 1, 1]

Transfer function:

H  (w2 , 0, w1 , 0, 0, w3 )

H  0.5, 0, 1, 0, 0, 1

heinz@gfai.de

www.gfai.de/~heinz

17

Example
Key X and keyhole H
unipolar

max(FFT) at 0 Hz
(uni/uni)
heinz@gfai.de

www.gfai.de/~heinz

18

Conclusion









To characterize time- and frequency domain, we transform delays and
weights of a simplest interference network into a LTI transfer response
A procedure [H] = trans(T,W,fs) calculates the (time-discrete) transfer
function H (pulse response) of the net from delay vector T (delay mask)
and weight vector W
The FFT shows learning problems for unipolar signals and unipolar H
because of highest DC-value
A mixture between unipolar signals and bipolar transfer function (weights)
acts as good alternative (nerve nets)
Interpreting bursts as transfer functions (pulse responses), we design an
inverse procedure [T,W] = net(H,fs) that reconstructs the net structure
[T,W] from transfer function H
Find Scilab sources and the paper on the web
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv

heinz@gfai.de

www.gfai.de/~heinz

19

Relevance for ANN







The transfer function or pulse response H is responsible for all sequential
properties of a network: for code and sound generation or detection
The lecture shows, that smallest delays and delay differences change the
pulse response H of the network
Remembering the "Neural Networks" (NN, ANN) approach with layers
clocked by clock cycles we find, that the NN-approach destroyes the
sequential structure of each network complete
In no case ANN or NN are candidates to understand the function of nerve
like structures
Thinking about nerves we need interferential approches that does not
destroy the delay structure of the net.

heinz@gfai.de

www.gfai.de/~heinz

20

Und der Herr sprach: "So führte ich
euch auf den Weg der Erkenntnis.
Gehet nun, und traget die Botschaft in
die Welt hinaus!"

Vielen Dank für die
Aufmerksamkeit!

Erfolgreiche Google-Suchterme:
"Interferenznetze", "Mathematik des
Nervensystems", "Heinz",
"Akustische Kamera"
heinz@gfai.de

www.gfai.de/~heinz

Dr. G. Heinz, GFaI
Volmerstr.3
12489 Berlin
Tel. +49 (30) 814563-490
www.gfai.de/~heinz
heinz@gfai.de
21


Slide 15

www.gfai.de/~heinz

How Network Topology Defines its Behavior Serial Code Detection with Spiking Networks
Dr. Gerd Heinz

Gesellschaft zur Förderung
angewandter Informatik e.V
Berlin-Adlershof

Workshop „Autonomous Systems”
Herwig Unger & Wolfgang Halang
Hotel Sabina Playa, Cala Millor
Mallorca, 13-17 Oct. 2013

Sensor- und Motor- Homunculus.

Natural History Museum, London

Contents

www.gfai.de/~heinz












Abstract
Convolution
A Small Interference Network
Construction of Transfer Functions
Applying a Convolution
Spike Output
Frequency Analysis
Unipolar or Bipolar Signal Levels?
Interpreting Bursts
Examples

Abstract











Compared with technical sensors, sound and code analysis of nerve
system is fascinating
We differ between the whisper of the wind or the branding of waves,
we know the songs of birds, we hear dangerous noises of a defect car
engine, we feel, if an airplane starts
And we speak and understand languages: Do we have a chance, to
interprete the function of a nerve net on the level of net structure?
We try to analyze a simplest delaying network in nerve-like structure
Our net consists of delays T and weights W
Basing on Interference Network (IN) abstraction we transform the net
into a transfer function H of a linear time-invariant system (LTI-system)
We use convolution between input time-function and transfer function
to find the "behaviour" of the LTI-system
* The work bases on the book "Neuronale Interferenzen", Kap.8b, S.181,
download: www.gfai.de/~heinz/publications/NI/index.htm

heinz@gfai.de

www.gfai.de/~heinz

3

Convolution


"Faltung" (terminus created by Felix Bernstein, 1922):
t

y(t )  x(t ) * h(t )   x(t   ) h( ) d
0



Discrete form (Cauchy product):
n

yn   hk xnk
k 0



Example:
FIR-filter
as direct
implementation
of convolution,
form: Y = X * S

heinz@gfai.de

www.gfai.de/~heinz

4

A Small Interference Network


Form:

Our Abstraction:

1

x(t)

N'

y(t)

x(t)

n

heinz@gfai.de

w1 N'

w2

N

+

...

N

...

2

y(t)

wn

Delay vector:

T  [ 1 , 2 ,..., n ]

Weight vector:

W  [w1 , w2 ,...,wn ]

Transfer function:

1 n
y(t )   wi x(t   i )
n i

www.gfai.de/~heinz

5

Construction of Transfer Function H
(Transfer function of LTI-system)
Discrete transfer function H seen as discrete time function with sample
distance ts = 1/fs and with growing index i :

i = [… 2, 3, 4, 5, 6, 7, 8, 9, …]

fs = 1/ts

H = [… wi-1, wi, wi+1, wi+2, wi+3, wi+4, wi+5, wi+6, …]



Length of H is greater the delay difference:



Construction of the transfer function of the net by addition of weights:
H(j) = H(j) + W(i) mit j = T(i) :

length(H) ≥ max(T) – min(T)

H(T(i)) = H(T(i)) + W(i)
heinz@gfai.de

www.gfai.de/~heinz

6

Get Transfer Function with Scilab
function [H] = trans(T,W,fs);
if length(T) == length(W) then
T = T * fs;
// apply sample rate of H
T = round(T);
// T becomes index: integer
H = 1:max(T); H = H * 0;
// create an empty H
for i = 1:length(T),
// for all T(i), W(i)
j = T(i),
// delay becomes the H-index j
H(j) = H(j) + W(i),
// add the weight to H
end // for
else // if
printf('\n\nerror: T and W have different size\n');
end // if
endfunction;
H is the transfer function of a LTI-system!
heinz@gfai.de

www.gfai.de/~heinz

7

Applying a Convolution
What is the system answer Y for different input functions X ?
It is simple the convolution with H , the multiplication of time series

y(t) = h(t) * x(t)


Using vectors

Y=X*H


X

H

Y

Scilab form

Y = convol(H,X)


Fourier Analysis of H

F = abs(fft(H))

heinz@gfai.de

www.gfai.de/~heinz

8

Barker Codes and Spikes






Hebbian rule in neuro-science shows, that a neuron needs high
synchronous emissions to learn
We need spikes at the output of the neuron
Barker codes maximize spike-like output of long sequences in
RADAR technology:
Example:

H = [1, 1, 1, -1, 1]
X = rev(H)

(Barker code no. 5)

Y = convol(X,H) = [1, 0, 1, 0, 5, 0, 1, 0, 1]


But neurons don't have negative signal values!
What can we do?

heinz@gfai.de

www.gfai.de/~heinz

9

Spectral Analysis of Transfer Function H
j

F (e ) 



 H (n)e

 jn

n  




FFT of any unipolar transfer function shows the maximum for frequency
f = 0 Hz (DC)
It is not possible to learn with unipolar H ; codes are AC:

Highest level at 0 Hz

Unipolar
{0…1}

Bipolar
{-1…1}

heinz@gfai.de

www.gfai.de/~heinz

10

Unipolar or Bipolar Signal Levels?


Unipolar signals, unipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{-1…0…1}

11

Unipolar or Bipolar Signal Levels?


Bipolar signals, bipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{0…1}

12

Unipolar or Bipolar Signal Levels?


Unipolar signals, bipolar synapses (neuron)

heinz@gfai.de

www.gfai.de/~heinz

{0…1} {-1…1}

13

Unipolar or Bipolar Signal Levels?
unipolar signals and bipolar synapses (neuron)
X, Y:
uni {0…1}
H:
bi {-1…1}
Big surprize:
 Using unipolar signals X, Y and bipolar H, the system is not significant
worse compared to the best case uni/uni

Test it:
 Use relating Scilab sources under
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv
Conclusion
 Nerve systems do not need bipolar signals to detect code and sound, if
the synapses are bipolar (inhibiting or exciting)!
heinz@gfai.de

www.gfai.de/~heinz

14

Interpreting Bursts


Noisy groups of pulses are known at different locations in nerve system



Is it possible, to find the net structure behind them?

heinz@gfai.de

www.gfai.de/~heinz

15

The Inversive Procedure


We interprete a burst as transfer function H (seen as pulse response)
and reproduce the delays T and weights W of the network behind:
function [T,W] = net(H,fs);
// returns T and W
j=1;
// W-index j
for i=1:length(H)
// H-index i
if H(i) == 0 then ;
// do nothing
else
// write the value to W, the index to T
W(j) = H(i);
// value to W
T(j) = i;
// index to T
j = j+1;
// increment j
end;
// endif
end;
// endfor
T = T ./ fs;
// multiply with sample duration
T = T - min(T);
// scale to min: reduced T-vector
endfunction;

heinz@gfai.de

www.gfai.de/~heinz

16

Example H = f(T,W)


Delays T, weights W, transfer function H, reducing vectors: index r
Delays:
Weights:

Reduced T, W:

T  [ 1 , 2 , 3 ]  [5, 3, 8]

W  [w1 , w2 , w3 ]  [1, 0.5, 1]
TR  [ R1 , R 2 , R3 ]  [0, 2, 5]
WR  [wR1 , wR 2 , wR3 ]  [.5, 1, 1]

Transfer function:

H  (w2 , 0, w1 , 0, 0, w3 )

H  0.5, 0, 1, 0, 0, 1

heinz@gfai.de

www.gfai.de/~heinz

17

Example
Key X and keyhole H
unipolar

max(FFT) at 0 Hz
(uni/uni)
heinz@gfai.de

www.gfai.de/~heinz

18

Conclusion









To characterize time- and frequency domain, we transform delays and
weights of a simplest interference network into a LTI transfer response
A procedure [H] = trans(T,W,fs) calculates the (time-discrete) transfer
function H (pulse response) of the net from delay vector T (delay mask)
and weight vector W
The FFT shows learning problems for unipolar signals and unipolar H
because of highest DC-value
A mixture between unipolar signals and bipolar transfer function (weights)
acts as good alternative (nerve nets)
Interpreting bursts as transfer functions (pulse responses), we design an
inverse procedure [T,W] = net(H,fs) that reconstructs the net structure
[T,W] from transfer function H
Find Scilab sources and the paper on the web
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv

heinz@gfai.de

www.gfai.de/~heinz

19

Relevance for ANN







The transfer function or pulse response H is responsible for all sequential
properties of a network: for code and sound generation or detection
The lecture shows, that smallest delays and delay differences change the
pulse response H of the network
Remembering the "Neural Networks" (NN, ANN) approach with layers
clocked by clock cycles we find, that the NN-approach destroyes the
sequential structure of each network complete
In no case ANN or NN are candidates to understand the function of nerve
like structures
Thinking about nerves we need interferential approches that does not
destroy the delay structure of the net.

heinz@gfai.de

www.gfai.de/~heinz

20

Und der Herr sprach: "So führte ich
euch auf den Weg der Erkenntnis.
Gehet nun, und traget die Botschaft in
die Welt hinaus!"

Vielen Dank für die
Aufmerksamkeit!

Erfolgreiche Google-Suchterme:
"Interferenznetze", "Mathematik des
Nervensystems", "Heinz",
"Akustische Kamera"
heinz@gfai.de

www.gfai.de/~heinz

Dr. G. Heinz, GFaI
Volmerstr.3
12489 Berlin
Tel. +49 (30) 814563-490
www.gfai.de/~heinz
heinz@gfai.de
21


Slide 16

www.gfai.de/~heinz

How Network Topology Defines its Behavior Serial Code Detection with Spiking Networks
Dr. Gerd Heinz

Gesellschaft zur Förderung
angewandter Informatik e.V
Berlin-Adlershof

Workshop „Autonomous Systems”
Herwig Unger & Wolfgang Halang
Hotel Sabina Playa, Cala Millor
Mallorca, 13-17 Oct. 2013

Sensor- und Motor- Homunculus.

Natural History Museum, London

Contents

www.gfai.de/~heinz












Abstract
Convolution
A Small Interference Network
Construction of Transfer Functions
Applying a Convolution
Spike Output
Frequency Analysis
Unipolar or Bipolar Signal Levels?
Interpreting Bursts
Examples

Abstract











Compared with technical sensors, sound and code analysis of nerve
system is fascinating
We differ between the whisper of the wind or the branding of waves,
we know the songs of birds, we hear dangerous noises of a defect car
engine, we feel, if an airplane starts
And we speak and understand languages: Do we have a chance, to
interprete the function of a nerve net on the level of net structure?
We try to analyze a simplest delaying network in nerve-like structure
Our net consists of delays T and weights W
Basing on Interference Network (IN) abstraction we transform the net
into a transfer function H of a linear time-invariant system (LTI-system)
We use convolution between input time-function and transfer function
to find the "behaviour" of the LTI-system
* The work bases on the book "Neuronale Interferenzen", Kap.8b, S.181,
download: www.gfai.de/~heinz/publications/NI/index.htm

heinz@gfai.de

www.gfai.de/~heinz

3

Convolution


"Faltung" (terminus created by Felix Bernstein, 1922):
t

y(t )  x(t ) * h(t )   x(t   ) h( ) d
0



Discrete form (Cauchy product):
n

yn   hk xnk
k 0



Example:
FIR-filter
as direct
implementation
of convolution,
form: Y = X * S

heinz@gfai.de

www.gfai.de/~heinz

4

A Small Interference Network


Form:

Our Abstraction:

1

x(t)

N'

y(t)

x(t)

n

heinz@gfai.de

w1 N'

w2

N

+

...

N

...

2

y(t)

wn

Delay vector:

T  [ 1 , 2 ,..., n ]

Weight vector:

W  [w1 , w2 ,...,wn ]

Transfer function:

1 n
y(t )   wi x(t   i )
n i

www.gfai.de/~heinz

5

Construction of Transfer Function H
(Transfer function of LTI-system)
Discrete transfer function H seen as discrete time function with sample
distance ts = 1/fs and with growing index i :

i = [… 2, 3, 4, 5, 6, 7, 8, 9, …]

fs = 1/ts

H = [… wi-1, wi, wi+1, wi+2, wi+3, wi+4, wi+5, wi+6, …]



Length of H is greater the delay difference:



Construction of the transfer function of the net by addition of weights:
H(j) = H(j) + W(i) mit j = T(i) :

length(H) ≥ max(T) – min(T)

H(T(i)) = H(T(i)) + W(i)
heinz@gfai.de

www.gfai.de/~heinz

6

Get Transfer Function with Scilab
function [H] = trans(T,W,fs);
if length(T) == length(W) then
T = T * fs;
// apply sample rate of H
T = round(T);
// T becomes index: integer
H = 1:max(T); H = H * 0;
// create an empty H
for i = 1:length(T),
// for all T(i), W(i)
j = T(i),
// delay becomes the H-index j
H(j) = H(j) + W(i),
// add the weight to H
end // for
else // if
printf('\n\nerror: T and W have different size\n');
end // if
endfunction;
H is the transfer function of a LTI-system!
heinz@gfai.de

www.gfai.de/~heinz

7

Applying a Convolution
What is the system answer Y for different input functions X ?
It is simple the convolution with H , the multiplication of time series

y(t) = h(t) * x(t)


Using vectors

Y=X*H


X

H

Y

Scilab form

Y = convol(H,X)


Fourier Analysis of H

F = abs(fft(H))

heinz@gfai.de

www.gfai.de/~heinz

8

Barker Codes and Spikes






Hebbian rule in neuro-science shows, that a neuron needs high
synchronous emissions to learn
We need spikes at the output of the neuron
Barker codes maximize spike-like output of long sequences in
RADAR technology:
Example:

H = [1, 1, 1, -1, 1]
X = rev(H)

(Barker code no. 5)

Y = convol(X,H) = [1, 0, 1, 0, 5, 0, 1, 0, 1]


But neurons don't have negative signal values!
What can we do?

heinz@gfai.de

www.gfai.de/~heinz

9

Spectral Analysis of Transfer Function H
j

F (e ) 



 H (n)e

 jn

n  




FFT of any unipolar transfer function shows the maximum for frequency
f = 0 Hz (DC)
It is not possible to learn with unipolar H ; codes are AC:

Highest level at 0 Hz

Unipolar
{0…1}

Bipolar
{-1…1}

heinz@gfai.de

www.gfai.de/~heinz

10

Unipolar or Bipolar Signal Levels?


Unipolar signals, unipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{-1…0…1}

11

Unipolar or Bipolar Signal Levels?


Bipolar signals, bipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{0…1}

12

Unipolar or Bipolar Signal Levels?


Unipolar signals, bipolar synapses (neuron)

heinz@gfai.de

www.gfai.de/~heinz

{0…1} {-1…1}

13

Unipolar or Bipolar Signal Levels?
unipolar signals and bipolar synapses (neuron)
X, Y:
uni {0…1}
H:
bi {-1…1}
Big surprize:
 Using unipolar signals X, Y and bipolar H, the system is not significant
worse compared to the best case uni/uni

Test it:
 Use relating Scilab sources under
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv
Conclusion
 Nerve systems do not need bipolar signals to detect code and sound, if
the synapses are bipolar (inhibiting or exciting)!
heinz@gfai.de

www.gfai.de/~heinz

14

Interpreting Bursts


Noisy groups of pulses are known at different locations in nerve system



Is it possible, to find the net structure behind them?

heinz@gfai.de

www.gfai.de/~heinz

15

The Inversive Procedure


We interprete a burst as transfer function H (seen as pulse response)
and reproduce the delays T and weights W of the network behind:
function [T,W] = net(H,fs);
// returns T and W
j=1;
// W-index j
for i=1:length(H)
// H-index i
if H(i) == 0 then ;
// do nothing
else
// write the value to W, the index to T
W(j) = H(i);
// value to W
T(j) = i;
// index to T
j = j+1;
// increment j
end;
// endif
end;
// endfor
T = T ./ fs;
// multiply with sample duration
T = T - min(T);
// scale to min: reduced T-vector
endfunction;

heinz@gfai.de

www.gfai.de/~heinz

16

Example H = f(T,W)


Delays T, weights W, transfer function H, reducing vectors: index r
Delays:
Weights:

Reduced T, W:

T  [ 1 , 2 , 3 ]  [5, 3, 8]

W  [w1 , w2 , w3 ]  [1, 0.5, 1]
TR  [ R1 , R 2 , R3 ]  [0, 2, 5]
WR  [wR1 , wR 2 , wR3 ]  [.5, 1, 1]

Transfer function:

H  (w2 , 0, w1 , 0, 0, w3 )

H  0.5, 0, 1, 0, 0, 1

heinz@gfai.de

www.gfai.de/~heinz

17

Example
Key X and keyhole H
unipolar

max(FFT) at 0 Hz
(uni/uni)
heinz@gfai.de

www.gfai.de/~heinz

18

Conclusion









To characterize time- and frequency domain, we transform delays and
weights of a simplest interference network into a LTI transfer response
A procedure [H] = trans(T,W,fs) calculates the (time-discrete) transfer
function H (pulse response) of the net from delay vector T (delay mask)
and weight vector W
The FFT shows learning problems for unipolar signals and unipolar H
because of highest DC-value
A mixture between unipolar signals and bipolar transfer function (weights)
acts as good alternative (nerve nets)
Interpreting bursts as transfer functions (pulse responses), we design an
inverse procedure [T,W] = net(H,fs) that reconstructs the net structure
[T,W] from transfer function H
Find Scilab sources and the paper on the web
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv

heinz@gfai.de

www.gfai.de/~heinz

19

Relevance for ANN







The transfer function or pulse response H is responsible for all sequential
properties of a network: for code and sound generation or detection
The lecture shows, that smallest delays and delay differences change the
pulse response H of the network
Remembering the "Neural Networks" (NN, ANN) approach with layers
clocked by clock cycles we find, that the NN-approach destroyes the
sequential structure of each network complete
In no case ANN or NN are candidates to understand the function of nerve
like structures
Thinking about nerves we need interferential approches that does not
destroy the delay structure of the net.

heinz@gfai.de

www.gfai.de/~heinz

20

Und der Herr sprach: "So führte ich
euch auf den Weg der Erkenntnis.
Gehet nun, und traget die Botschaft in
die Welt hinaus!"

Vielen Dank für die
Aufmerksamkeit!

Erfolgreiche Google-Suchterme:
"Interferenznetze", "Mathematik des
Nervensystems", "Heinz",
"Akustische Kamera"
heinz@gfai.de

www.gfai.de/~heinz

Dr. G. Heinz, GFaI
Volmerstr.3
12489 Berlin
Tel. +49 (30) 814563-490
www.gfai.de/~heinz
heinz@gfai.de
21


Slide 17

www.gfai.de/~heinz

How Network Topology Defines its Behavior Serial Code Detection with Spiking Networks
Dr. Gerd Heinz

Gesellschaft zur Förderung
angewandter Informatik e.V
Berlin-Adlershof

Workshop „Autonomous Systems”
Herwig Unger & Wolfgang Halang
Hotel Sabina Playa, Cala Millor
Mallorca, 13-17 Oct. 2013

Sensor- und Motor- Homunculus.

Natural History Museum, London

Contents

www.gfai.de/~heinz












Abstract
Convolution
A Small Interference Network
Construction of Transfer Functions
Applying a Convolution
Spike Output
Frequency Analysis
Unipolar or Bipolar Signal Levels?
Interpreting Bursts
Examples

Abstract











Compared with technical sensors, sound and code analysis of nerve
system is fascinating
We differ between the whisper of the wind or the branding of waves,
we know the songs of birds, we hear dangerous noises of a defect car
engine, we feel, if an airplane starts
And we speak and understand languages: Do we have a chance, to
interprete the function of a nerve net on the level of net structure?
We try to analyze a simplest delaying network in nerve-like structure
Our net consists of delays T and weights W
Basing on Interference Network (IN) abstraction we transform the net
into a transfer function H of a linear time-invariant system (LTI-system)
We use convolution between input time-function and transfer function
to find the "behaviour" of the LTI-system
* The work bases on the book "Neuronale Interferenzen", Kap.8b, S.181,
download: www.gfai.de/~heinz/publications/NI/index.htm

heinz@gfai.de

www.gfai.de/~heinz

3

Convolution


"Faltung" (terminus created by Felix Bernstein, 1922):
t

y(t )  x(t ) * h(t )   x(t   ) h( ) d
0



Discrete form (Cauchy product):
n

yn   hk xnk
k 0



Example:
FIR-filter
as direct
implementation
of convolution,
form: Y = X * S

heinz@gfai.de

www.gfai.de/~heinz

4

A Small Interference Network


Form:

Our Abstraction:

1

x(t)

N'

y(t)

x(t)

n

heinz@gfai.de

w1 N'

w2

N

+

...

N

...

2

y(t)

wn

Delay vector:

T  [ 1 , 2 ,..., n ]

Weight vector:

W  [w1 , w2 ,...,wn ]

Transfer function:

1 n
y(t )   wi x(t   i )
n i

www.gfai.de/~heinz

5

Construction of Transfer Function H
(Transfer function of LTI-system)
Discrete transfer function H seen as discrete time function with sample
distance ts = 1/fs and with growing index i :

i = [… 2, 3, 4, 5, 6, 7, 8, 9, …]

fs = 1/ts

H = [… wi-1, wi, wi+1, wi+2, wi+3, wi+4, wi+5, wi+6, …]



Length of H is greater the delay difference:



Construction of the transfer function of the net by addition of weights:
H(j) = H(j) + W(i) mit j = T(i) :

length(H) ≥ max(T) – min(T)

H(T(i)) = H(T(i)) + W(i)
heinz@gfai.de

www.gfai.de/~heinz

6

Get Transfer Function with Scilab
function [H] = trans(T,W,fs);
if length(T) == length(W) then
T = T * fs;
// apply sample rate of H
T = round(T);
// T becomes index: integer
H = 1:max(T); H = H * 0;
// create an empty H
for i = 1:length(T),
// for all T(i), W(i)
j = T(i),
// delay becomes the H-index j
H(j) = H(j) + W(i),
// add the weight to H
end // for
else // if
printf('\n\nerror: T and W have different size\n');
end // if
endfunction;
H is the transfer function of a LTI-system!
heinz@gfai.de

www.gfai.de/~heinz

7

Applying a Convolution
What is the system answer Y for different input functions X ?
It is simple the convolution with H , the multiplication of time series

y(t) = h(t) * x(t)


Using vectors

Y=X*H


X

H

Y

Scilab form

Y = convol(H,X)


Fourier Analysis of H

F = abs(fft(H))

heinz@gfai.de

www.gfai.de/~heinz

8

Barker Codes and Spikes






Hebbian rule in neuro-science shows, that a neuron needs high
synchronous emissions to learn
We need spikes at the output of the neuron
Barker codes maximize spike-like output of long sequences in
RADAR technology:
Example:

H = [1, 1, 1, -1, 1]
X = rev(H)

(Barker code no. 5)

Y = convol(X,H) = [1, 0, 1, 0, 5, 0, 1, 0, 1]


But neurons don't have negative signal values!
What can we do?

heinz@gfai.de

www.gfai.de/~heinz

9

Spectral Analysis of Transfer Function H
j

F (e ) 



 H (n)e

 jn

n  




FFT of any unipolar transfer function shows the maximum for frequency
f = 0 Hz (DC)
It is not possible to learn with unipolar H ; codes are AC:

Highest level at 0 Hz

Unipolar
{0…1}

Bipolar
{-1…1}

heinz@gfai.de

www.gfai.de/~heinz

10

Unipolar or Bipolar Signal Levels?


Unipolar signals, unipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{-1…0…1}

11

Unipolar or Bipolar Signal Levels?


Bipolar signals, bipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{0…1}

12

Unipolar or Bipolar Signal Levels?


Unipolar signals, bipolar synapses (neuron)

heinz@gfai.de

www.gfai.de/~heinz

{0…1} {-1…1}

13

Unipolar or Bipolar Signal Levels?
unipolar signals and bipolar synapses (neuron)
X, Y:
uni {0…1}
H:
bi {-1…1}
Big surprize:
 Using unipolar signals X, Y and bipolar H, the system is not significant
worse compared to the best case uni/uni

Test it:
 Use relating Scilab sources under
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv
Conclusion
 Nerve systems do not need bipolar signals to detect code and sound, if
the synapses are bipolar (inhibiting or exciting)!
heinz@gfai.de

www.gfai.de/~heinz

14

Interpreting Bursts


Noisy groups of pulses are known at different locations in nerve system



Is it possible, to find the net structure behind them?

heinz@gfai.de

www.gfai.de/~heinz

15

The Inversive Procedure


We interprete a burst as transfer function H (seen as pulse response)
and reproduce the delays T and weights W of the network behind:
function [T,W] = net(H,fs);
// returns T and W
j=1;
// W-index j
for i=1:length(H)
// H-index i
if H(i) == 0 then ;
// do nothing
else
// write the value to W, the index to T
W(j) = H(i);
// value to W
T(j) = i;
// index to T
j = j+1;
// increment j
end;
// endif
end;
// endfor
T = T ./ fs;
// multiply with sample duration
T = T - min(T);
// scale to min: reduced T-vector
endfunction;

heinz@gfai.de

www.gfai.de/~heinz

16

Example H = f(T,W)


Delays T, weights W, transfer function H, reducing vectors: index r
Delays:
Weights:

Reduced T, W:

T  [ 1 , 2 , 3 ]  [5, 3, 8]

W  [w1 , w2 , w3 ]  [1, 0.5, 1]
TR  [ R1 , R 2 , R3 ]  [0, 2, 5]
WR  [wR1 , wR 2 , wR3 ]  [.5, 1, 1]

Transfer function:

H  (w2 , 0, w1 , 0, 0, w3 )

H  0.5, 0, 1, 0, 0, 1

heinz@gfai.de

www.gfai.de/~heinz

17

Example
Key X and keyhole H
unipolar

max(FFT) at 0 Hz
(uni/uni)
heinz@gfai.de

www.gfai.de/~heinz

18

Conclusion









To characterize time- and frequency domain, we transform delays and
weights of a simplest interference network into a LTI transfer response
A procedure [H] = trans(T,W,fs) calculates the (time-discrete) transfer
function H (pulse response) of the net from delay vector T (delay mask)
and weight vector W
The FFT shows learning problems for unipolar signals and unipolar H
because of highest DC-value
A mixture between unipolar signals and bipolar transfer function (weights)
acts as good alternative (nerve nets)
Interpreting bursts as transfer functions (pulse responses), we design an
inverse procedure [T,W] = net(H,fs) that reconstructs the net structure
[T,W] from transfer function H
Find Scilab sources and the paper on the web
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv

heinz@gfai.de

www.gfai.de/~heinz

19

Relevance for ANN







The transfer function or pulse response H is responsible for all sequential
properties of a network: for code and sound generation or detection
The lecture shows, that smallest delays and delay differences change the
pulse response H of the network
Remembering the "Neural Networks" (NN, ANN) approach with layers
clocked by clock cycles we find, that the NN-approach destroyes the
sequential structure of each network complete
In no case ANN or NN are candidates to understand the function of nerve
like structures
Thinking about nerves we need interferential approches that does not
destroy the delay structure of the net.

heinz@gfai.de

www.gfai.de/~heinz

20

Und der Herr sprach: "So führte ich
euch auf den Weg der Erkenntnis.
Gehet nun, und traget die Botschaft in
die Welt hinaus!"

Vielen Dank für die
Aufmerksamkeit!

Erfolgreiche Google-Suchterme:
"Interferenznetze", "Mathematik des
Nervensystems", "Heinz",
"Akustische Kamera"
heinz@gfai.de

www.gfai.de/~heinz

Dr. G. Heinz, GFaI
Volmerstr.3
12489 Berlin
Tel. +49 (30) 814563-490
www.gfai.de/~heinz
heinz@gfai.de
21


Slide 18

www.gfai.de/~heinz

How Network Topology Defines its Behavior Serial Code Detection with Spiking Networks
Dr. Gerd Heinz

Gesellschaft zur Förderung
angewandter Informatik e.V
Berlin-Adlershof

Workshop „Autonomous Systems”
Herwig Unger & Wolfgang Halang
Hotel Sabina Playa, Cala Millor
Mallorca, 13-17 Oct. 2013

Sensor- und Motor- Homunculus.

Natural History Museum, London

Contents

www.gfai.de/~heinz












Abstract
Convolution
A Small Interference Network
Construction of Transfer Functions
Applying a Convolution
Spike Output
Frequency Analysis
Unipolar or Bipolar Signal Levels?
Interpreting Bursts
Examples

Abstract











Compared with technical sensors, sound and code analysis of nerve
system is fascinating
We differ between the whisper of the wind or the branding of waves,
we know the songs of birds, we hear dangerous noises of a defect car
engine, we feel, if an airplane starts
And we speak and understand languages: Do we have a chance, to
interprete the function of a nerve net on the level of net structure?
We try to analyze a simplest delaying network in nerve-like structure
Our net consists of delays T and weights W
Basing on Interference Network (IN) abstraction we transform the net
into a transfer function H of a linear time-invariant system (LTI-system)
We use convolution between input time-function and transfer function
to find the "behaviour" of the LTI-system
* The work bases on the book "Neuronale Interferenzen", Kap.8b, S.181,
download: www.gfai.de/~heinz/publications/NI/index.htm

heinz@gfai.de

www.gfai.de/~heinz

3

Convolution


"Faltung" (terminus created by Felix Bernstein, 1922):
t

y(t )  x(t ) * h(t )   x(t   ) h( ) d
0



Discrete form (Cauchy product):
n

yn   hk xnk
k 0



Example:
FIR-filter
as direct
implementation
of convolution,
form: Y = X * S

heinz@gfai.de

www.gfai.de/~heinz

4

A Small Interference Network


Form:

Our Abstraction:

1

x(t)

N'

y(t)

x(t)

n

heinz@gfai.de

w1 N'

w2

N

+

...

N

...

2

y(t)

wn

Delay vector:

T  [ 1 , 2 ,..., n ]

Weight vector:

W  [w1 , w2 ,...,wn ]

Transfer function:

1 n
y(t )   wi x(t   i )
n i

www.gfai.de/~heinz

5

Construction of Transfer Function H
(Transfer function of LTI-system)
Discrete transfer function H seen as discrete time function with sample
distance ts = 1/fs and with growing index i :

i = [… 2, 3, 4, 5, 6, 7, 8, 9, …]

fs = 1/ts

H = [… wi-1, wi, wi+1, wi+2, wi+3, wi+4, wi+5, wi+6, …]



Length of H is greater the delay difference:



Construction of the transfer function of the net by addition of weights:
H(j) = H(j) + W(i) mit j = T(i) :

length(H) ≥ max(T) – min(T)

H(T(i)) = H(T(i)) + W(i)
heinz@gfai.de

www.gfai.de/~heinz

6

Get Transfer Function with Scilab
function [H] = trans(T,W,fs);
if length(T) == length(W) then
T = T * fs;
// apply sample rate of H
T = round(T);
// T becomes index: integer
H = 1:max(T); H = H * 0;
// create an empty H
for i = 1:length(T),
// for all T(i), W(i)
j = T(i),
// delay becomes the H-index j
H(j) = H(j) + W(i),
// add the weight to H
end // for
else // if
printf('\n\nerror: T and W have different size\n');
end // if
endfunction;
H is the transfer function of a LTI-system!
heinz@gfai.de

www.gfai.de/~heinz

7

Applying a Convolution
What is the system answer Y for different input functions X ?
It is simple the convolution with H , the multiplication of time series

y(t) = h(t) * x(t)


Using vectors

Y=X*H


X

H

Y

Scilab form

Y = convol(H,X)


Fourier Analysis of H

F = abs(fft(H))

heinz@gfai.de

www.gfai.de/~heinz

8

Barker Codes and Spikes






Hebbian rule in neuro-science shows, that a neuron needs high
synchronous emissions to learn
We need spikes at the output of the neuron
Barker codes maximize spike-like output of long sequences in
RADAR technology:
Example:

H = [1, 1, 1, -1, 1]
X = rev(H)

(Barker code no. 5)

Y = convol(X,H) = [1, 0, 1, 0, 5, 0, 1, 0, 1]


But neurons don't have negative signal values!
What can we do?

heinz@gfai.de

www.gfai.de/~heinz

9

Spectral Analysis of Transfer Function H
j

F (e ) 



 H (n)e

 jn

n  




FFT of any unipolar transfer function shows the maximum for frequency
f = 0 Hz (DC)
It is not possible to learn with unipolar H ; codes are AC:

Highest level at 0 Hz

Unipolar
{0…1}

Bipolar
{-1…1}

heinz@gfai.de

www.gfai.de/~heinz

10

Unipolar or Bipolar Signal Levels?


Unipolar signals, unipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{-1…0…1}

11

Unipolar or Bipolar Signal Levels?


Bipolar signals, bipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{0…1}

12

Unipolar or Bipolar Signal Levels?


Unipolar signals, bipolar synapses (neuron)

heinz@gfai.de

www.gfai.de/~heinz

{0…1} {-1…1}

13

Unipolar or Bipolar Signal Levels?
unipolar signals and bipolar synapses (neuron)
X, Y:
uni {0…1}
H:
bi {-1…1}
Big surprize:
 Using unipolar signals X, Y and bipolar H, the system is not significant
worse compared to the best case uni/uni

Test it:
 Use relating Scilab sources under
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv
Conclusion
 Nerve systems do not need bipolar signals to detect code and sound, if
the synapses are bipolar (inhibiting or exciting)!
heinz@gfai.de

www.gfai.de/~heinz

14

Interpreting Bursts


Noisy groups of pulses are known at different locations in nerve system



Is it possible, to find the net structure behind them?

heinz@gfai.de

www.gfai.de/~heinz

15

The Inversive Procedure


We interprete a burst as transfer function H (seen as pulse response)
and reproduce the delays T and weights W of the network behind:
function [T,W] = net(H,fs);
// returns T and W
j=1;
// W-index j
for i=1:length(H)
// H-index i
if H(i) == 0 then ;
// do nothing
else
// write the value to W, the index to T
W(j) = H(i);
// value to W
T(j) = i;
// index to T
j = j+1;
// increment j
end;
// endif
end;
// endfor
T = T ./ fs;
// multiply with sample duration
T = T - min(T);
// scale to min: reduced T-vector
endfunction;

heinz@gfai.de

www.gfai.de/~heinz

16

Example H = f(T,W)


Delays T, weights W, transfer function H, reducing vectors: index r
Delays:
Weights:

Reduced T, W:

T  [ 1 , 2 , 3 ]  [5, 3, 8]

W  [w1 , w2 , w3 ]  [1, 0.5, 1]
TR  [ R1 , R 2 , R3 ]  [0, 2, 5]
WR  [wR1 , wR 2 , wR3 ]  [.5, 1, 1]

Transfer function:

H  (w2 , 0, w1 , 0, 0, w3 )

H  0.5, 0, 1, 0, 0, 1

heinz@gfai.de

www.gfai.de/~heinz

17

Example
Key X and keyhole H
unipolar

max(FFT) at 0 Hz
(uni/uni)
heinz@gfai.de

www.gfai.de/~heinz

18

Conclusion









To characterize time- and frequency domain, we transform delays and
weights of a simplest interference network into a LTI transfer response
A procedure [H] = trans(T,W,fs) calculates the (time-discrete) transfer
function H (pulse response) of the net from delay vector T (delay mask)
and weight vector W
The FFT shows learning problems for unipolar signals and unipolar H
because of highest DC-value
A mixture between unipolar signals and bipolar transfer function (weights)
acts as good alternative (nerve nets)
Interpreting bursts as transfer functions (pulse responses), we design an
inverse procedure [T,W] = net(H,fs) that reconstructs the net structure
[T,W] from transfer function H
Find Scilab sources and the paper on the web
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv

heinz@gfai.de

www.gfai.de/~heinz

19

Relevance for ANN







The transfer function or pulse response H is responsible for all sequential
properties of a network: for code and sound generation or detection
The lecture shows, that smallest delays and delay differences change the
pulse response H of the network
Remembering the "Neural Networks" (NN, ANN) approach with layers
clocked by clock cycles we find, that the NN-approach destroyes the
sequential structure of each network complete
In no case ANN or NN are candidates to understand the function of nerve
like structures
Thinking about nerves we need interferential approches that does not
destroy the delay structure of the net.

heinz@gfai.de

www.gfai.de/~heinz

20

Und der Herr sprach: "So führte ich
euch auf den Weg der Erkenntnis.
Gehet nun, und traget die Botschaft in
die Welt hinaus!"

Vielen Dank für die
Aufmerksamkeit!

Erfolgreiche Google-Suchterme:
"Interferenznetze", "Mathematik des
Nervensystems", "Heinz",
"Akustische Kamera"
heinz@gfai.de

www.gfai.de/~heinz

Dr. G. Heinz, GFaI
Volmerstr.3
12489 Berlin
Tel. +49 (30) 814563-490
www.gfai.de/~heinz
heinz@gfai.de
21


Slide 19

www.gfai.de/~heinz

How Network Topology Defines its Behavior Serial Code Detection with Spiking Networks
Dr. Gerd Heinz

Gesellschaft zur Förderung
angewandter Informatik e.V
Berlin-Adlershof

Workshop „Autonomous Systems”
Herwig Unger & Wolfgang Halang
Hotel Sabina Playa, Cala Millor
Mallorca, 13-17 Oct. 2013

Sensor- und Motor- Homunculus.

Natural History Museum, London

Contents

www.gfai.de/~heinz












Abstract
Convolution
A Small Interference Network
Construction of Transfer Functions
Applying a Convolution
Spike Output
Frequency Analysis
Unipolar or Bipolar Signal Levels?
Interpreting Bursts
Examples

Abstract











Compared with technical sensors, sound and code analysis of nerve
system is fascinating
We differ between the whisper of the wind or the branding of waves,
we know the songs of birds, we hear dangerous noises of a defect car
engine, we feel, if an airplane starts
And we speak and understand languages: Do we have a chance, to
interprete the function of a nerve net on the level of net structure?
We try to analyze a simplest delaying network in nerve-like structure
Our net consists of delays T and weights W
Basing on Interference Network (IN) abstraction we transform the net
into a transfer function H of a linear time-invariant system (LTI-system)
We use convolution between input time-function and transfer function
to find the "behaviour" of the LTI-system
* The work bases on the book "Neuronale Interferenzen", Kap.8b, S.181,
download: www.gfai.de/~heinz/publications/NI/index.htm

heinz@gfai.de

www.gfai.de/~heinz

3

Convolution


"Faltung" (terminus created by Felix Bernstein, 1922):
t

y(t )  x(t ) * h(t )   x(t   ) h( ) d
0



Discrete form (Cauchy product):
n

yn   hk xnk
k 0



Example:
FIR-filter
as direct
implementation
of convolution,
form: Y = X * S

heinz@gfai.de

www.gfai.de/~heinz

4

A Small Interference Network


Form:

Our Abstraction:

1

x(t)

N'

y(t)

x(t)

n

heinz@gfai.de

w1 N'

w2

N

+

...

N

...

2

y(t)

wn

Delay vector:

T  [ 1 , 2 ,..., n ]

Weight vector:

W  [w1 , w2 ,...,wn ]

Transfer function:

1 n
y(t )   wi x(t   i )
n i

www.gfai.de/~heinz

5

Construction of Transfer Function H
(Transfer function of LTI-system)
Discrete transfer function H seen as discrete time function with sample
distance ts = 1/fs and with growing index i :

i = [… 2, 3, 4, 5, 6, 7, 8, 9, …]

fs = 1/ts

H = [… wi-1, wi, wi+1, wi+2, wi+3, wi+4, wi+5, wi+6, …]



Length of H is greater the delay difference:



Construction of the transfer function of the net by addition of weights:
H(j) = H(j) + W(i) mit j = T(i) :

length(H) ≥ max(T) – min(T)

H(T(i)) = H(T(i)) + W(i)
heinz@gfai.de

www.gfai.de/~heinz

6

Get Transfer Function with Scilab
function [H] = trans(T,W,fs);
if length(T) == length(W) then
T = T * fs;
// apply sample rate of H
T = round(T);
// T becomes index: integer
H = 1:max(T); H = H * 0;
// create an empty H
for i = 1:length(T),
// for all T(i), W(i)
j = T(i),
// delay becomes the H-index j
H(j) = H(j) + W(i),
// add the weight to H
end // for
else // if
printf('\n\nerror: T and W have different size\n');
end // if
endfunction;
H is the transfer function of a LTI-system!
heinz@gfai.de

www.gfai.de/~heinz

7

Applying a Convolution
What is the system answer Y for different input functions X ?
It is simple the convolution with H , the multiplication of time series

y(t) = h(t) * x(t)


Using vectors

Y=X*H


X

H

Y

Scilab form

Y = convol(H,X)


Fourier Analysis of H

F = abs(fft(H))

heinz@gfai.de

www.gfai.de/~heinz

8

Barker Codes and Spikes






Hebbian rule in neuro-science shows, that a neuron needs high
synchronous emissions to learn
We need spikes at the output of the neuron
Barker codes maximize spike-like output of long sequences in
RADAR technology:
Example:

H = [1, 1, 1, -1, 1]
X = rev(H)

(Barker code no. 5)

Y = convol(X,H) = [1, 0, 1, 0, 5, 0, 1, 0, 1]


But neurons don't have negative signal values!
What can we do?

heinz@gfai.de

www.gfai.de/~heinz

9

Spectral Analysis of Transfer Function H
j

F (e ) 



 H (n)e

 jn

n  




FFT of any unipolar transfer function shows the maximum for frequency
f = 0 Hz (DC)
It is not possible to learn with unipolar H ; codes are AC:

Highest level at 0 Hz

Unipolar
{0…1}

Bipolar
{-1…1}

heinz@gfai.de

www.gfai.de/~heinz

10

Unipolar or Bipolar Signal Levels?


Unipolar signals, unipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{-1…0…1}

11

Unipolar or Bipolar Signal Levels?


Bipolar signals, bipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{0…1}

12

Unipolar or Bipolar Signal Levels?


Unipolar signals, bipolar synapses (neuron)

heinz@gfai.de

www.gfai.de/~heinz

{0…1} {-1…1}

13

Unipolar or Bipolar Signal Levels?
unipolar signals and bipolar synapses (neuron)
X, Y:
uni {0…1}
H:
bi {-1…1}
Big surprize:
 Using unipolar signals X, Y and bipolar H, the system is not significant
worse compared to the best case uni/uni

Test it:
 Use relating Scilab sources under
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv
Conclusion
 Nerve systems do not need bipolar signals to detect code and sound, if
the synapses are bipolar (inhibiting or exciting)!
heinz@gfai.de

www.gfai.de/~heinz

14

Interpreting Bursts


Noisy groups of pulses are known at different locations in nerve system



Is it possible, to find the net structure behind them?

heinz@gfai.de

www.gfai.de/~heinz

15

The Inversive Procedure


We interprete a burst as transfer function H (seen as pulse response)
and reproduce the delays T and weights W of the network behind:
function [T,W] = net(H,fs);
// returns T and W
j=1;
// W-index j
for i=1:length(H)
// H-index i
if H(i) == 0 then ;
// do nothing
else
// write the value to W, the index to T
W(j) = H(i);
// value to W
T(j) = i;
// index to T
j = j+1;
// increment j
end;
// endif
end;
// endfor
T = T ./ fs;
// multiply with sample duration
T = T - min(T);
// scale to min: reduced T-vector
endfunction;

heinz@gfai.de

www.gfai.de/~heinz

16

Example H = f(T,W)


Delays T, weights W, transfer function H, reducing vectors: index r
Delays:
Weights:

Reduced T, W:

T  [ 1 , 2 , 3 ]  [5, 3, 8]

W  [w1 , w2 , w3 ]  [1, 0.5, 1]
TR  [ R1 , R 2 , R3 ]  [0, 2, 5]
WR  [wR1 , wR 2 , wR3 ]  [.5, 1, 1]

Transfer function:

H  (w2 , 0, w1 , 0, 0, w3 )

H  0.5, 0, 1, 0, 0, 1

heinz@gfai.de

www.gfai.de/~heinz

17

Example
Key X and keyhole H
unipolar

max(FFT) at 0 Hz
(uni/uni)
heinz@gfai.de

www.gfai.de/~heinz

18

Conclusion









To characterize time- and frequency domain, we transform delays and
weights of a simplest interference network into a LTI transfer response
A procedure [H] = trans(T,W,fs) calculates the (time-discrete) transfer
function H (pulse response) of the net from delay vector T (delay mask)
and weight vector W
The FFT shows learning problems for unipolar signals and unipolar H
because of highest DC-value
A mixture between unipolar signals and bipolar transfer function (weights)
acts as good alternative (nerve nets)
Interpreting bursts as transfer functions (pulse responses), we design an
inverse procedure [T,W] = net(H,fs) that reconstructs the net structure
[T,W] from transfer function H
Find Scilab sources and the paper on the web
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv

heinz@gfai.de

www.gfai.de/~heinz

19

Relevance for ANN







The transfer function or pulse response H is responsible for all sequential
properties of a network: for code and sound generation or detection
The lecture shows, that smallest delays and delay differences change the
pulse response H of the network
Remembering the "Neural Networks" (NN, ANN) approach with layers
clocked by clock cycles we find, that the NN-approach destroyes the
sequential structure of each network complete
In no case ANN or NN are candidates to understand the function of nerve
like structures
Thinking about nerves we need interferential approches that does not
destroy the delay structure of the net.

heinz@gfai.de

www.gfai.de/~heinz

20

Und der Herr sprach: "So führte ich
euch auf den Weg der Erkenntnis.
Gehet nun, und traget die Botschaft in
die Welt hinaus!"

Vielen Dank für die
Aufmerksamkeit!

Erfolgreiche Google-Suchterme:
"Interferenznetze", "Mathematik des
Nervensystems", "Heinz",
"Akustische Kamera"
heinz@gfai.de

www.gfai.de/~heinz

Dr. G. Heinz, GFaI
Volmerstr.3
12489 Berlin
Tel. +49 (30) 814563-490
www.gfai.de/~heinz
heinz@gfai.de
21


Slide 20

www.gfai.de/~heinz

How Network Topology Defines its Behavior Serial Code Detection with Spiking Networks
Dr. Gerd Heinz

Gesellschaft zur Förderung
angewandter Informatik e.V
Berlin-Adlershof

Workshop „Autonomous Systems”
Herwig Unger & Wolfgang Halang
Hotel Sabina Playa, Cala Millor
Mallorca, 13-17 Oct. 2013

Sensor- und Motor- Homunculus.

Natural History Museum, London

Contents

www.gfai.de/~heinz












Abstract
Convolution
A Small Interference Network
Construction of Transfer Functions
Applying a Convolution
Spike Output
Frequency Analysis
Unipolar or Bipolar Signal Levels?
Interpreting Bursts
Examples

Abstract











Compared with technical sensors, sound and code analysis of nerve
system is fascinating
We differ between the whisper of the wind or the branding of waves,
we know the songs of birds, we hear dangerous noises of a defect car
engine, we feel, if an airplane starts
And we speak and understand languages: Do we have a chance, to
interprete the function of a nerve net on the level of net structure?
We try to analyze a simplest delaying network in nerve-like structure
Our net consists of delays T and weights W
Basing on Interference Network (IN) abstraction we transform the net
into a transfer function H of a linear time-invariant system (LTI-system)
We use convolution between input time-function and transfer function
to find the "behaviour" of the LTI-system
* The work bases on the book "Neuronale Interferenzen", Kap.8b, S.181,
download: www.gfai.de/~heinz/publications/NI/index.htm

heinz@gfai.de

www.gfai.de/~heinz

3

Convolution


"Faltung" (terminus created by Felix Bernstein, 1922):
t

y(t )  x(t ) * h(t )   x(t   ) h( ) d
0



Discrete form (Cauchy product):
n

yn   hk xnk
k 0



Example:
FIR-filter
as direct
implementation
of convolution,
form: Y = X * S

heinz@gfai.de

www.gfai.de/~heinz

4

A Small Interference Network


Form:

Our Abstraction:

1

x(t)

N'

y(t)

x(t)

n

heinz@gfai.de

w1 N'

w2

N

+

...

N

...

2

y(t)

wn

Delay vector:

T  [ 1 , 2 ,..., n ]

Weight vector:

W  [w1 , w2 ,...,wn ]

Transfer function:

1 n
y(t )   wi x(t   i )
n i

www.gfai.de/~heinz

5

Construction of Transfer Function H
(Transfer function of LTI-system)
Discrete transfer function H seen as discrete time function with sample
distance ts = 1/fs and with growing index i :

i = [… 2, 3, 4, 5, 6, 7, 8, 9, …]

fs = 1/ts

H = [… wi-1, wi, wi+1, wi+2, wi+3, wi+4, wi+5, wi+6, …]



Length of H is greater the delay difference:



Construction of the transfer function of the net by addition of weights:
H(j) = H(j) + W(i) mit j = T(i) :

length(H) ≥ max(T) – min(T)

H(T(i)) = H(T(i)) + W(i)
heinz@gfai.de

www.gfai.de/~heinz

6

Get Transfer Function with Scilab
function [H] = trans(T,W,fs);
if length(T) == length(W) then
T = T * fs;
// apply sample rate of H
T = round(T);
// T becomes index: integer
H = 1:max(T); H = H * 0;
// create an empty H
for i = 1:length(T),
// for all T(i), W(i)
j = T(i),
// delay becomes the H-index j
H(j) = H(j) + W(i),
// add the weight to H
end // for
else // if
printf('\n\nerror: T and W have different size\n');
end // if
endfunction;
H is the transfer function of a LTI-system!
heinz@gfai.de

www.gfai.de/~heinz

7

Applying a Convolution
What is the system answer Y for different input functions X ?
It is simple the convolution with H , the multiplication of time series

y(t) = h(t) * x(t)


Using vectors

Y=X*H


X

H

Y

Scilab form

Y = convol(H,X)


Fourier Analysis of H

F = abs(fft(H))

heinz@gfai.de

www.gfai.de/~heinz

8

Barker Codes and Spikes






Hebbian rule in neuro-science shows, that a neuron needs high
synchronous emissions to learn
We need spikes at the output of the neuron
Barker codes maximize spike-like output of long sequences in
RADAR technology:
Example:

H = [1, 1, 1, -1, 1]
X = rev(H)

(Barker code no. 5)

Y = convol(X,H) = [1, 0, 1, 0, 5, 0, 1, 0, 1]


But neurons don't have negative signal values!
What can we do?

heinz@gfai.de

www.gfai.de/~heinz

9

Spectral Analysis of Transfer Function H
j

F (e ) 



 H (n)e

 jn

n  




FFT of any unipolar transfer function shows the maximum for frequency
f = 0 Hz (DC)
It is not possible to learn with unipolar H ; codes are AC:

Highest level at 0 Hz

Unipolar
{0…1}

Bipolar
{-1…1}

heinz@gfai.de

www.gfai.de/~heinz

10

Unipolar or Bipolar Signal Levels?


Unipolar signals, unipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{-1…0…1}

11

Unipolar or Bipolar Signal Levels?


Bipolar signals, bipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{0…1}

12

Unipolar or Bipolar Signal Levels?


Unipolar signals, bipolar synapses (neuron)

heinz@gfai.de

www.gfai.de/~heinz

{0…1} {-1…1}

13

Unipolar or Bipolar Signal Levels?
unipolar signals and bipolar synapses (neuron)
X, Y:
uni {0…1}
H:
bi {-1…1}
Big surprize:
 Using unipolar signals X, Y and bipolar H, the system is not significant
worse compared to the best case uni/uni

Test it:
 Use relating Scilab sources under
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv
Conclusion
 Nerve systems do not need bipolar signals to detect code and sound, if
the synapses are bipolar (inhibiting or exciting)!
heinz@gfai.de

www.gfai.de/~heinz

14

Interpreting Bursts


Noisy groups of pulses are known at different locations in nerve system



Is it possible, to find the net structure behind them?

heinz@gfai.de

www.gfai.de/~heinz

15

The Inversive Procedure


We interprete a burst as transfer function H (seen as pulse response)
and reproduce the delays T and weights W of the network behind:
function [T,W] = net(H,fs);
// returns T and W
j=1;
// W-index j
for i=1:length(H)
// H-index i
if H(i) == 0 then ;
// do nothing
else
// write the value to W, the index to T
W(j) = H(i);
// value to W
T(j) = i;
// index to T
j = j+1;
// increment j
end;
// endif
end;
// endfor
T = T ./ fs;
// multiply with sample duration
T = T - min(T);
// scale to min: reduced T-vector
endfunction;

heinz@gfai.de

www.gfai.de/~heinz

16

Example H = f(T,W)


Delays T, weights W, transfer function H, reducing vectors: index r
Delays:
Weights:

Reduced T, W:

T  [ 1 , 2 , 3 ]  [5, 3, 8]

W  [w1 , w2 , w3 ]  [1, 0.5, 1]
TR  [ R1 , R 2 , R3 ]  [0, 2, 5]
WR  [wR1 , wR 2 , wR3 ]  [.5, 1, 1]

Transfer function:

H  (w2 , 0, w1 , 0, 0, w3 )

H  0.5, 0, 1, 0, 0, 1

heinz@gfai.de

www.gfai.de/~heinz

17

Example
Key X and keyhole H
unipolar

max(FFT) at 0 Hz
(uni/uni)
heinz@gfai.de

www.gfai.de/~heinz

18

Conclusion









To characterize time- and frequency domain, we transform delays and
weights of a simplest interference network into a LTI transfer response
A procedure [H] = trans(T,W,fs) calculates the (time-discrete) transfer
function H (pulse response) of the net from delay vector T (delay mask)
and weight vector W
The FFT shows learning problems for unipolar signals and unipolar H
because of highest DC-value
A mixture between unipolar signals and bipolar transfer function (weights)
acts as good alternative (nerve nets)
Interpreting bursts as transfer functions (pulse responses), we design an
inverse procedure [T,W] = net(H,fs) that reconstructs the net structure
[T,W] from transfer function H
Find Scilab sources and the paper on the web
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv

heinz@gfai.de

www.gfai.de/~heinz

19

Relevance for ANN







The transfer function or pulse response H is responsible for all sequential
properties of a network: for code and sound generation or detection
The lecture shows, that smallest delays and delay differences change the
pulse response H of the network
Remembering the "Neural Networks" (NN, ANN) approach with layers
clocked by clock cycles we find, that the NN-approach destroyes the
sequential structure of each network complete
In no case ANN or NN are candidates to understand the function of nerve
like structures
Thinking about nerves we need interferential approches that does not
destroy the delay structure of the net.

heinz@gfai.de

www.gfai.de/~heinz

20

Und der Herr sprach: "So führte ich
euch auf den Weg der Erkenntnis.
Gehet nun, und traget die Botschaft in
die Welt hinaus!"

Vielen Dank für die
Aufmerksamkeit!

Erfolgreiche Google-Suchterme:
"Interferenznetze", "Mathematik des
Nervensystems", "Heinz",
"Akustische Kamera"
heinz@gfai.de

www.gfai.de/~heinz

Dr. G. Heinz, GFaI
Volmerstr.3
12489 Berlin
Tel. +49 (30) 814563-490
www.gfai.de/~heinz
heinz@gfai.de
21


Slide 21

www.gfai.de/~heinz

How Network Topology Defines its Behavior Serial Code Detection with Spiking Networks
Dr. Gerd Heinz

Gesellschaft zur Förderung
angewandter Informatik e.V
Berlin-Adlershof

Workshop „Autonomous Systems”
Herwig Unger & Wolfgang Halang
Hotel Sabina Playa, Cala Millor
Mallorca, 13-17 Oct. 2013

Sensor- und Motor- Homunculus.

Natural History Museum, London

Contents

www.gfai.de/~heinz












Abstract
Convolution
A Small Interference Network
Construction of Transfer Functions
Applying a Convolution
Spike Output
Frequency Analysis
Unipolar or Bipolar Signal Levels?
Interpreting Bursts
Examples

Abstract











Compared with technical sensors, sound and code analysis of nerve
system is fascinating
We differ between the whisper of the wind or the branding of waves,
we know the songs of birds, we hear dangerous noises of a defect car
engine, we feel, if an airplane starts
And we speak and understand languages: Do we have a chance, to
interprete the function of a nerve net on the level of net structure?
We try to analyze a simplest delaying network in nerve-like structure
Our net consists of delays T and weights W
Basing on Interference Network (IN) abstraction we transform the net
into a transfer function H of a linear time-invariant system (LTI-system)
We use convolution between input time-function and transfer function
to find the "behaviour" of the LTI-system
* The work bases on the book "Neuronale Interferenzen", Kap.8b, S.181,
download: www.gfai.de/~heinz/publications/NI/index.htm

heinz@gfai.de

www.gfai.de/~heinz

3

Convolution


"Faltung" (terminus created by Felix Bernstein, 1922):
t

y(t )  x(t ) * h(t )   x(t   ) h( ) d
0



Discrete form (Cauchy product):
n

yn   hk xnk
k 0



Example:
FIR-filter
as direct
implementation
of convolution,
form: Y = X * S

heinz@gfai.de

www.gfai.de/~heinz

4

A Small Interference Network


Form:

Our Abstraction:

1

x(t)

N'

y(t)

x(t)

n

heinz@gfai.de

w1 N'

w2

N

+

...

N

...

2

y(t)

wn

Delay vector:

T  [ 1 , 2 ,..., n ]

Weight vector:

W  [w1 , w2 ,...,wn ]

Transfer function:

1 n
y(t )   wi x(t   i )
n i

www.gfai.de/~heinz

5

Construction of Transfer Function H
(Transfer function of LTI-system)
Discrete transfer function H seen as discrete time function with sample
distance ts = 1/fs and with growing index i :

i = [… 2, 3, 4, 5, 6, 7, 8, 9, …]

fs = 1/ts

H = [… wi-1, wi, wi+1, wi+2, wi+3, wi+4, wi+5, wi+6, …]



Length of H is greater the delay difference:



Construction of the transfer function of the net by addition of weights:
H(j) = H(j) + W(i) mit j = T(i) :

length(H) ≥ max(T) – min(T)

H(T(i)) = H(T(i)) + W(i)
heinz@gfai.de

www.gfai.de/~heinz

6

Get Transfer Function with Scilab
function [H] = trans(T,W,fs);
if length(T) == length(W) then
T = T * fs;
// apply sample rate of H
T = round(T);
// T becomes index: integer
H = 1:max(T); H = H * 0;
// create an empty H
for i = 1:length(T),
// for all T(i), W(i)
j = T(i),
// delay becomes the H-index j
H(j) = H(j) + W(i),
// add the weight to H
end // for
else // if
printf('\n\nerror: T and W have different size\n');
end // if
endfunction;
H is the transfer function of a LTI-system!
heinz@gfai.de

www.gfai.de/~heinz

7

Applying a Convolution
What is the system answer Y for different input functions X ?
It is simple the convolution with H , the multiplication of time series

y(t) = h(t) * x(t)


Using vectors

Y=X*H


X

H

Y

Scilab form

Y = convol(H,X)


Fourier Analysis of H

F = abs(fft(H))

heinz@gfai.de

www.gfai.de/~heinz

8

Barker Codes and Spikes






Hebbian rule in neuro-science shows, that a neuron needs high
synchronous emissions to learn
We need spikes at the output of the neuron
Barker codes maximize spike-like output of long sequences in
RADAR technology:
Example:

H = [1, 1, 1, -1, 1]
X = rev(H)

(Barker code no. 5)

Y = convol(X,H) = [1, 0, 1, 0, 5, 0, 1, 0, 1]


But neurons don't have negative signal values!
What can we do?

heinz@gfai.de

www.gfai.de/~heinz

9

Spectral Analysis of Transfer Function H
j

F (e ) 



 H (n)e

 jn

n  




FFT of any unipolar transfer function shows the maximum for frequency
f = 0 Hz (DC)
It is not possible to learn with unipolar H ; codes are AC:

Highest level at 0 Hz

Unipolar
{0…1}

Bipolar
{-1…1}

heinz@gfai.de

www.gfai.de/~heinz

10

Unipolar or Bipolar Signal Levels?


Unipolar signals, unipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{-1…0…1}

11

Unipolar or Bipolar Signal Levels?


Bipolar signals, bipolar synapses:

heinz@gfai.de

www.gfai.de/~heinz

{0…1}

12

Unipolar or Bipolar Signal Levels?


Unipolar signals, bipolar synapses (neuron)

heinz@gfai.de

www.gfai.de/~heinz

{0…1} {-1…1}

13

Unipolar or Bipolar Signal Levels?
unipolar signals and bipolar synapses (neuron)
X, Y:
uni {0…1}
H:
bi {-1…1}
Big surprize:
 Using unipolar signals X, Y and bipolar H, the system is not significant
worse compared to the best case uni/uni

Test it:
 Use relating Scilab sources under
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv
Conclusion
 Nerve systems do not need bipolar signals to detect code and sound, if
the synapses are bipolar (inhibiting or exciting)!
heinz@gfai.de

www.gfai.de/~heinz

14

Interpreting Bursts


Noisy groups of pulses are known at different locations in nerve system



Is it possible, to find the net structure behind them?

heinz@gfai.de

www.gfai.de/~heinz

15

The Inversive Procedure


We interprete a burst as transfer function H (seen as pulse response)
and reproduce the delays T and weights W of the network behind:
function [T,W] = net(H,fs);
// returns T and W
j=1;
// W-index j
for i=1:length(H)
// H-index i
if H(i) == 0 then ;
// do nothing
else
// write the value to W, the index to T
W(j) = H(i);
// value to W
T(j) = i;
// index to T
j = j+1;
// increment j
end;
// endif
end;
// endfor
T = T ./ fs;
// multiply with sample duration
T = T - min(T);
// scale to min: reduced T-vector
endfunction;

heinz@gfai.de

www.gfai.de/~heinz

16

Example H = f(T,W)


Delays T, weights W, transfer function H, reducing vectors: index r
Delays:
Weights:

Reduced T, W:

T  [ 1 , 2 , 3 ]  [5, 3, 8]

W  [w1 , w2 , w3 ]  [1, 0.5, 1]
TR  [ R1 , R 2 , R3 ]  [0, 2, 5]
WR  [wR1 , wR 2 , wR3 ]  [.5, 1, 1]

Transfer function:

H  (w2 , 0, w1 , 0, 0, w3 )

H  0.5, 0, 1, 0, 0, 1

heinz@gfai.de

www.gfai.de/~heinz

17

Example
Key X and keyhole H
unipolar

max(FFT) at 0 Hz
(uni/uni)
heinz@gfai.de

www.gfai.de/~heinz

18

Conclusion









To characterize time- and frequency domain, we transform delays and
weights of a simplest interference network into a LTI transfer response
A procedure [H] = trans(T,W,fs) calculates the (time-discrete) transfer
function H (pulse response) of the net from delay vector T (delay mask)
and weight vector W
The FFT shows learning problems for unipolar signals and unipolar H
because of highest DC-value
A mixture between unipolar signals and bipolar transfer function (weights)
acts as good alternative (nerve nets)
Interpreting bursts as transfer functions (pulse responses), we design an
inverse procedure [T,W] = net(H,fs) that reconstructs the net structure
[T,W] from transfer function H
Find Scilab sources and the paper on the web
www.gfai.de/~heinz/publications/papers/2013_autosys.pdf
www.gfai.de/~heinz/techdocs/index.htm#conv

heinz@gfai.de

www.gfai.de/~heinz

19

Relevance for ANN







The transfer function or pulse response H is responsible for all sequential
properties of a network: for code and sound generation or detection
The lecture shows, that smallest delays and delay differences change the
pulse response H of the network
Remembering the "Neural Networks" (NN, ANN) approach with layers
clocked by clock cycles we find, that the NN-approach destroyes the
sequential structure of each network complete
In no case ANN or NN are candidates to understand the function of nerve
like structures
Thinking about nerves we need interferential approches that does not
destroy the delay structure of the net.

heinz@gfai.de

www.gfai.de/~heinz

20

Und der Herr sprach: "So führte ich
euch auf den Weg der Erkenntnis.
Gehet nun, und traget die Botschaft in
die Welt hinaus!"

Vielen Dank für die
Aufmerksamkeit!

Erfolgreiche Google-Suchterme:
"Interferenznetze", "Mathematik des
Nervensystems", "Heinz",
"Akustische Kamera"
heinz@gfai.de

www.gfai.de/~heinz

Dr. G. Heinz, GFaI
Volmerstr.3
12489 Berlin
Tel. +49 (30) 814563-490
www.gfai.de/~heinz
heinz@gfai.de
21