No Slide Title
Download
Report
Transcript No Slide Title
Wave-equation
migration velocity analysis
Paul Sava*
Biondo Biondi
Sergey Fomel
Stanford University
Stanford University
UT Austin
paul.sava@stanford.edu
The problem
• Depth imaging
– image: migration
– velocity: migration velocity analysis
• Migration and MVA are inseparable
• “Everyhing depends on v(x,y,z)”
» JF Claerbout, 1999
paul.sava@stanford.edu
An approximation
paul.sava@stanford.edu
A better approximation
paul.sava@stanford.edu
In the “big picture”
wavefronts
wavefields
• Kirchhoff migration
• wave-equation migration
• traveltime tomography
• wave-equation MVA
(WEMVA)
paul.sava@stanford.edu
Agenda
Scattering
Theoretical background
Imaging
Non-linear operator
WEMVA methodology
Linear operator
Image perturbation
WEMVA applications
paul.sava@stanford.edu
Wavefield scattering
paul.sava@stanford.edu
Wavefield scattering
paul.sava@stanford.edu
Scattered wavefield
Wavefield
perturbation
Medium
perturbation
ΔW f s
paul.sava@stanford.edu
Agenda
Scattering
Theoretical background
Imaging
Non-linear operator
WEMVA methodology
Linear operator
Image perturbation
WEMVA applications
paul.sava@stanford.edu
Imaging: Correct velocity
location
depth
depth
Background
velocity
location
Reflectivity
model
depth
depth
What migration does...
What the data tell us...
depth
Migrated
image
paul.sava@stanford.edu
Imaging: Incorrect velocity
location
depth
depth
Perturbed
velocity
location
Reflectivity
model
depth
depth
What migration does...
What the data tell us...
depth
Migrated
image
paul.sava@stanford.edu
WEMVA objective
location
depth
Velocity
perturbation
ΔR L s
location
image
perturbation
(known)
WEMVA
operator
slowness
perturbation
(unknown)
depth
Image
perturbation
paul.sava@stanford.edu
Agenda
Scattering
Theoretical background
Imaging
Non-linear operator
WEMVA methodology
Linear operator
Image perturbation
WEMVA applications
paul.sava@stanford.edu
Wavefield extrapolation
dW
ik z W
dz
Double Square-Root Equation
Fourier Finite Difference
Generalized Screen Propagator
z Δz
W
ik z Δz
e
z
W
W
z Δz
z Δz
0
W
dk z
kz 0ik z0 Δz βΔs
Δs
ikk z Δz
ds s s0
e
βΔs
paul.sava@stanford.edu
Slowness perturbation
z
s0
s 0 Δs
z Δz
z Δz
0
W
z Δz βΔs
0
W
e
paul.sava@stanford.edu
Wavefield perturbation
z
s 0 Δs
s0
z Δz
background
wavefield
ΔW
ΔW Δs
W0 e
wavefield
perturbation
βΔs
1
slowness
perturbation
paul.sava@stanford.edu
Agenda
Scattering
Theoretical background
Imaging
Non-linear operator
WEMVA methodology
Linear operator
Image perturbation
WEMVA applications
paul.sava@stanford.edu
Linearizations
ΔW W0 e
e
βΔs
1
e
βΔs
1 βΔs
Born approximation
e
βΔs
e
βΔs
βΔs
2 βΔs
2 βΔs
1
1 βΔs
Unit circle
paul.sava@stanford.edu
Linearizations
ΔW W0 e
βΔs
1
e
βΔs
1 1 ξ βΔs
1 ξβΔs
ξ 0,1
e
ξ0
βΔs
ξ 0.5
ξ 1
Unit circle
paul.sava@stanford.edu
Linearizations
ΔW W0 e
βΔs
ΔW W0 ξΔW βΔs
1
ξ 0,1
e
ξ0
βΔs
ξ 0.5
ξ 1
Unit circle
paul.sava@stanford.edu
Linear WEMVA
ΔW W0 e
βΔs
1
ΔW W0 ξΔW βΔs
ξ 0,1
ΔR L s
image
perturbation
(known)
WEMVA
operator
slowness
perturbation
(unknown)
paul.sava@stanford.edu
Agenda
Scattering
Theoretical background
Imaging
Non-linear operator
WEMVA methodology
Linear operator
Image perturbation
WEMVA applications
paul.sava@stanford.edu
Correct velocity
paul.sava@stanford.edu
Incorrect velocity
paul.sava@stanford.edu
Image perturbation
R0
R
ΔR R R 0
paul.sava@stanford.edu
Failure!
ΔR R R 0
paul.sava@stanford.edu
Small phase limitation
paul.sava@stanford.edu
What can we do?
• Define another objective function
– e.g. DSO
• Construct an image perturbation which
obeys the Born approximation
• ...
paul.sava@stanford.edu
Residual migration
ρ
R f ρ R 0
paul.sava@stanford.edu
Analytical image perturbation
R f ρ R 0
ΔR R R 0
Picked from data
dR
ΔR
Δρ
dρ ρρ0
Computed analytically
paul.sava@stanford.edu
Analytical image perturbation
R0
dR
dρ
ρ ρ 0
Δρ
paul.sava@stanford.edu
Image perturbations comparison
ΔR L s
ΔR R R 0
ΔR
dR
Δρ
dρ ρρ0
paul.sava@stanford.edu
Slowness perturbations
ΔR L s
ΔR R R 0
ΔR
dR
Δρ
dρ ρρ0
paul.sava@stanford.edu
Migrated images
ΔR L s
ΔR R R 0
ΔR
dR
Δρ
dρ ρρ0
paul.sava@stanford.edu
Migrated images: angle gathers
ΔR L s
ΔR R R 0
ΔR
dR
Δρ
dρ ρρ0
paul.sava@stanford.edu
Agenda
Scattering
Theoretical background
Imaging
Non-linear operator
WEMVA methodology
Linear operator
Image perturbation
WEMVA applications
paul.sava@stanford.edu
Other applications
• 4-D seismic monitoring
– image perturbations over time
– no need to construct
• Focusing MVA
– zero offset data
paul.sava@stanford.edu
4D seismic monitoring
paul.sava@stanford.edu
4D seismic monitoring
paul.sava@stanford.edu
4D seismic monitoring
paul.sava@stanford.edu
Focusing MVA
Correct image
Incorrect image
paul.sava@stanford.edu
Focusing MVA
paul.sava@stanford.edu
Focusing MVA
paul.sava@stanford.edu
Focusing MVA
paul.sava@stanford.edu
Focusing MVA
paul.sava@stanford.edu
Focusing MVA
paul.sava@stanford.edu
Focusing MVA
paul.sava@stanford.edu
Summary
• Wave-equation MVA
•
•
•
•
wavefield extrapolation
image space objective
focusing and moveouts
interpretation guided
• Linearization
• linear operator
• construct image perturbations
paul.sava@stanford.edu