Transcript Slide 1

Optimization of Elliptical SRF
Cavities where 𝑣 < 𝑐
Joel Newbolt
Mentor: Dr. Valery Shemelin
Why 𝑣 < 𝑐?
ο‚§ Acceleration of large subatomic particles
ο‚§ Accelerator driven systems (ADS)
β€’ Neutron Spallation
β€’ Tritium production
β€’ Nuclear waste transmutation
𝑣
INFN Milano Cavity, 𝑐 = 0.5
7/17/2015
Joel Newbolt, Valery Shemelin
2
Elliptical Cell Geometry
Non-reentrant (𝛼 > 90°)
Reentrant(𝛼 < 90°)
Geometric Constraints
Free Parameters
β€’
β€’
β€’
β€’
7/17/2015
Half-Cell Length, 𝐿
Wall Angle, 𝛼
Equatorial Radius, π‘…π‘’π‘ž
Aperture Radius, π‘…π‘Ž
ο‚§ Equator Ellipse Axes
β€’ 𝐴 and 𝐡
ο‚§ Iris Ellipse Axes
β€’ π‘Ž and 𝑏
Joel Newbolt, Valery Shemelin
3
Geometric Constraints
Half-Cell Length, 𝐿
Wall Angle, 𝜢
Constrained by mode of operation
Constrained by chemical treatment method
ο‚§ In-phase mode
Non-reentrant
Reentrant
ο‚§ πœ‹ mode
7/17/2015
Joel Newbolt, Valery Shemelin
4
Geometric Constraints (cont.)
Aperture Radius, 𝑹𝒂
Equatorial Radius, 𝑹𝒆𝒒
ο‚§ Propagation of higher-order
modes (HOMs)
1
π‘“π‘π‘’π‘‘π‘œπ‘“π‘“ ∝
π‘…π‘Ž
ο‚§ Tuned to make the
frequency of TM01 equal to
the driving frequency
β€’ Removed by resistive loads
ο‚§ Power left in cavity by
wakefields
1
π‘ƒβˆ 3
π‘…π‘Ž
ο‚§ Cell-to-cell coupling in multicell cavities
7/17/2015
Joel Newbolt, Valery Shemelin
5
Peak Fields
Magnetic Quenching
Field Emission
ο‚§ Superconductor
enters a normal
conducting state
ο‚§ Electrons are
emitted from the
superconductor
β€’ Magnetic field
changes too rapidly
β€’ Magnetic field is too
strong
β€’ Electric field is too
large
ο‚§ Threshold raised
by heat treatment
ο‚§ Causes heating of the
material
β€’ Spreads the region
of normal
conductivity
7/17/2015
Joel Newbolt, Valery Shemelin
6
Numerical Simulation
SUPERLANS
ο‚§ Simulation for axially
symmetric cavities
TunedCell
ο‚§ Wrapper code for
SUPERLANS
β€’ Adjusts π‘…π‘’π‘ž to make the
frequency of TM01 equal to
the driving frequency
β€’ Creates geometry file for
SUPERLANS
β€’ Linearly varies free
parameters
7/17/2015
Joel Newbolt, Valery Shemelin
7
Cavity Optimization
Goal of Optimization
ο‚§ Minimize π΅π‘π‘˜ πΈπ‘Žπ‘π‘ (and
equivalently π»π‘π‘˜ πΈπ‘Žπ‘π‘ )
ο‚§ Optimization constraints
β€’ Minimum wall angle, 𝛼
β€’ Maximum πΈπ‘π‘˜ πΈπ‘Žπ‘π‘
Cavity Optimizer
ο‚§ Matlab wrapper code for
TunedCell
ο‚§ Minimizes π΅π‘π‘˜ πΈπ‘Žπ‘π‘
ο‚§ Enforces geometric and
electromagnetic constraints
β€’ Minimum radius of curvature
of the cell (two times the
Niobium sheet thickness β‰ˆ 6
mm)
7/17/2015
Joel Newbolt, Valery Shemelin
8
Multi-Cell Cavity Optimization
Optimization by V. Shemelin
ο‚§ Reducing wall angle reduces
minimum π»π‘π‘˜ πΈπ‘Žπ‘π‘
7/17/2015
Optimization when 𝜷 = 𝒗
𝒄
<𝟏
ο‚§ Same trend for 𝛽 < 1
ο‚§ Increasing 𝛽 increases
minimum π»π‘π‘˜ πΈπ‘Žπ‘π‘
Joel Newbolt, Valery Shemelin
9
Istituto Nazionale di Fisica Nucleare (INFN)
Varying Iris Ellipse Ratio
Free Parameters
ο‚§ Equator Ellipse Ratio, 𝑅 =
𝑏
ο‚§ Iris Ellipse Ratio, π‘Ÿ = π‘Ž
ο‚§ Wall Distance, 𝑑
ο‚§ Wall Angle, π‘Žπ‘™π‘β„Žπ‘Ž
7/17/2015
𝐡
𝐴
ο‚§ Produces a minimum
πΈπ‘π‘˜ πΈπ‘Žπ‘π‘ for a given 𝑅, 𝑑
and π‘Žπ‘™π‘β„Žπ‘Ž
Joel Newbolt, Valery Shemelin
10
INFN Extension
ο‚§ Increasing wall angle
increases optimal iris ellipse
ratio
7/17/2015
ο‚§ Increasing wall distance
increases optimal iris ellipse
ratio
Joel Newbolt, Valery Shemelin
11
Bhabha Atomic Research Center (BARC)
BARC Optimization
ο‚§ Single-cell cavity
Multi-Cell Boundary Conditions
β€’ 𝛽 = 0.49
β€’ 𝐴 = 𝐡 = 20 mm
β€’ π‘Ž 𝑏 = 0.7
β€’ π‘…π‘Ž = 39 mm
ο‚§
ο‚§
Qualitatively similar
Differences attributed to
β€’
β€’
7/17/2015
Different levels of free parameter accuracy
Different simulation codes (SUPERLANS vs.
SUPERFISH)
Joel Newbolt, Valery Shemelin
12
BARC Verification
Single-Cell Boundary Conditions
Multi-Cell Boundary Conditions
ο‚§ Clear minimum in πΈπ‘π‘˜ πΈπ‘Žπ‘π‘
ο‚§ Lower values of πΈπ‘π‘˜ πΈπ‘Žπ‘π‘
and π΅π‘π‘˜ πΈπ‘Žπ‘π‘
7/17/2015
Joel Newbolt, Valery Shemelin
13
BARC Improvement
BARC Optimization Results
Free Parameters
Electromagnetic
Parameters
𝐴 = 20 mm
πΈπ‘π‘˜
𝐡 = 20 mm
πΈπ‘Žπ‘π‘ = 4.26
π‘Ž 𝑏 = 0.7
π΅π‘π‘˜
πΈπ‘Žπ‘π‘
𝛼 = 96.5°
= 8.02 mT/(MV/m)
Single-Cell Cavity Optimization
Free Parameters
Electromagnetic
Parameters
𝐴 = 20.81 mm
πΈπ‘π‘˜
πΈπ‘Žπ‘π‘
𝐡 = 51.3 mm
= 3.50
π‘Ž = 10.51 mm 𝑏 = 18.41 mm
π΅π‘π‘˜
πΈπ‘Žπ‘π‘
= 8.15 mT/(MV/m)
ο‚§ Optimized under BARC constraints (𝛽 = 0.49 and π‘…π‘Ž = 39 mm)
ο‚§ Result for minimum π΅π‘π‘˜ πΈπ‘Žπ‘π‘
7/17/2015
Joel Newbolt, Valery Shemelin
14
Single-Cell Cavity Length
Half-Cell Length
Beam Pipe Fields
E-field lines
Beam pipe
Half-wavelength
cell
𝑣
𝐿=
4𝑓
7/17/2015
𝛽𝑔 𝑐
𝐿=
4𝑓
ο‚§ Electric field decays
exponentially into the beam
pipe
Joel Newbolt, Valery Shemelin
15
Scaled Cavity Length
ο‚§ Reducing cavity length decreases π΅π‘π‘˜ πΈπ‘Žπ‘π‘
ο‚§ Reduction from BARC design
β€’ π΅π‘π‘˜ πΈπ‘Žπ‘π‘ by 8%
β€’ πΈπ‘π‘˜ πΈπ‘Žπ‘π‘ by 17.8%
7/17/2015
Joel Newbolt, Valery Shemelin
16
Future Work
ο‚§ Continue optimization of cavities with 𝛽 < 1
β€’ Prove reentrant shape is ineffective
ο‚§ Optimize the shape and length of single-cell
cavity with record setting accelerating
gradient
7/17/2015
Joel Newbolt, Valery Shemelin
17
Acknowledgements
Special thanks to
ο‚§ Dr. Valery Shemelin
ο‚§ Dr. Ivan Bazarov and Dr.
Georg Hoffstaetter
ο‚§ CLASSE Student Researchers
7/17/2015
Funding Agency
ο‚§ National Science
Foundation
Joel Newbolt, Valery Shemelin
18