Eulerian/Lagrangian relationships in 2D turbulence plus a

Download Report

Transcript Eulerian/Lagrangian relationships in 2D turbulence plus a

The barotropic vorticity equation (with free
surface)
u

y
, v

x
,    2

D  2
L2
   2    y  0
Dt 
LD

  2
L2    2
L2  
0
   2    ,   2   
t 
LD   
LD 
x
Barotropic Rossby waves (rigid lid)

u
y

, v
x
,    2
D 2
    y  0

Dt
 2

2
    ,   
0
t
x
u  U  u'
v  v'
  (y)   ' U y   '
Barotropic Rossby waves (rigid lid)

  '
 '
u  U  u' 


, v  v'
,    '  2 '
y
y y
x
  (y)   ' U y   '
 2

 '
2
  'U   ' 
0
t
x
x
Barotropic Rossby waves (rigid lid)
 2

 '
2
  'U   ' 
0
t
x
x
 ' expik x  il y  i t 

k
U 

k 2  l2
Rossby waves
The 2D vorticity equation
( f plane, no free-surface effects )

u
y

, v
x
,    2
 2
 , 2  D  F
t


In the absence of dissipation and forcing,
2D barotropic flows conserve
two quadratic invariants:
energy and enstrophy
1
E
A

A
1
Z
A
1 2
1
2
u  v dxdy

2
A

A
2
1
dxdy
2
A

A

A
1
2
 dxdy
2
1 2 2
   dxdy

2
As a result, one has a direct enstrophy cascade
and an inverse energy cascade
Two-dimensional turbulence:
the transfer mechanism
E  E1  E 2
Z  Z1  Z 2
Z  k2E
k 2 E  k12 E1  k22 E 2
As a result, one has a direct enstrophy cascade
 and an inverse energy cascade
Two-dimensional turbulence:
inertial ranges
 u3

 const ant  u  l1/ 3

l
E(k)dk  u 2  l 2 / 3
k  1/l
E (k)  k 5 / 3
As a result, one has a direct enstrophy cascade
and an inverse energy cascade

Two-dimensional turbulence:
inertial ranges
u3
 3  const ant  u  l
 l
E(k)dk  u 2  l 2
Z
k  1/l
E(k)  k 3
As a result, one has a direct enstrophy cascade
and an inverse energy cascade

Two-dimensional turbulence:
inertial ranges
k-5/3
log E(k)
k-3
E
Z
log k
As a result, one has a direct enstrophy cascade
and an inverse energy cascade
Is this all ?
Vortices form, interact,
and dominate the dynamics
Vortices are
localized, long-lived concentrations
of energy and enstrophy:
Coherent structures
Vortex studies:
Properties of individual vortices
(and their effect on tracer transport)
Processes of vortex formation
Vortex motion and interactions,
evolution of the vortex population
Transport in vortex-dominated flows
Coherent vortices in 2D turbulence
Qualitative structure of a coherent vortex
||
(u2+v2)/2
Q=(s2-2)/2
The Okubo-Weiss parameter
v u
u v
 
, sn 

x y
x y

2
Q  sn  ss2   2
Q  4 p
2
u
x
Q  4 det 
v


x
v u
, ss 

x y
u2+v2
u 
y 
 4 2
v 
Q=s2-2
y 
The Okubo-Weiss field in 2D turbulence

u2+v2
Q=s2-2
The Okubo-Weiss field in 2D turbulence

u2+v2
Q=s2-2
Coherent vortices
trap fluid particles
for long times
(contrary to what happens with linear waves)
Motion of Lagrangian particles
in 2D turbulence
(X j (t),Y j (t)) is the posit ionof the j  thparticleat timet
dX j

 u(X j ,Y j ,t)  
dt
y
dYj

 v(X j ,Y j ,t) 
dt
x
Formally, a non-autonomous Hamiltonian system
with one degree of freedom
The Lagrangian view
Effect of individual vortices:
Strong impermeability of the vortex edges
to inward and outward particle exchanges
Example: the stratospheric polar vortex
Vortex formation:
Instability of vorticity filaments
Dressing of vorticity peaks
But: why are vortices coherent ?
Q=s2-2
Instability of vorticity filaments

Q=s2-2
Existing vortices stabilize vorticity filaments:
Effects of strain and adverse shear

Q=s2-2
Processes of vortex formation and evolution
in freely-decaying turbulence:
Vortex formation period
Inhibition of vortex formation by existing vortices
Vortex interactions:
Mutual advection (elastic interactions)
Opposite-sign dipole formation (mostly elastic)
Same-sign vortex merging, stripping, etc
(strongly inelastic)
2 to 1, 2 to 1 plus another, ….
A model for vortex dynamics:
The (punctuated) point-vortex model
H
j

dt
y j
dx j
H
j

dt x j
dy j
1
H
4

i j
i
j
log Rij
R ij2  ( xi  x j ) 2  ( yi  y j ) 2
Beyond 2D:
 effects
Free-surface
Dynamics on the -plane
Role of stratification
Q=s2-2
The discarded effects: free surface
The discarded effects: dynamics on the -plane
Filtering fast modes:
The quasigeostrophic approximation
in stratified fluids
The stratified QG potential vorticity equation


, vg 
y
x
 v g  ug


  2
x y
ug  
2


f
 
2
0
q    0   y   2

z N (z) z 
N 2 (z)  
g d
 dz
q
 ,q  D  F
t
Vortex merging and filamentation
in 2D turbulence
Vortex merging and filamentation
in QG turbulence: role of the Green function